Result table

This table was generated on 2024-11-28 at 09:43. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
BestOf2023-1
profs
upnquick
Success
60.34
3.02
75.0
70.32
70.76
141.08
None
naive_implem
profs
boldeagle
Success
16709.67
835.48
83.75
51.35
63.24
114.59
None
art_attack
Master-IASD
ourasi
Success
229.38
11.47
65.0
49.56
57.26
106.82
None
advernope
Master-IASD
upnquick
Success
269.02
13.45
50.0
42.86
53.73
96.59
None
BestOf2023-2
profs
coktailjet
Success
66.71
3.34
68.75
40.81
53.5
94.31
None
mars-attack
Master-IASD
readycash
Success
149.45
7.47
31.25
28.92
37.75
66.67
None
alhambra
Master-IASD
kaisertrot
Success
110.34
5.52
31.25
27.25
32.78
60.03
None
defense-against-the-dark-attacks
Master-IASD
upnquick
Success
115.64
5.78
25.0
11.85
27.55
39.4
None
advengers
Master-IASD
boldeagle
Success
134.64
6.73
68.75
6.08
25.12
31.2
None
attack_of_mnist
Master-IASD
readycash
Success
149.8
7.49
37.5
6.05
25.13
31.18
None
fourchette
Master-IASD
kaisertrot
Success
110.1
5.5
56.25
6.03
25.14
31.17
None
base_repos
profs
kaisertrot
Success
103.27
5.16
50.0
6.07
25.09
31.16
None
shaq-attack
Master-IASD
coktailjet
Success
90.35
4.52
56.25
6.03
25.12
31.15
None
heart-attack
Master-IASD
coktailjet
Success
90.71
4.54
56.25
6.0
25.14
31.14
None
houdini
Master-IASD
readycash
Success
150.37
7.52
50.0
5.99
25.13
31.12
None
microsoft-defender
Master-IASD
upnquick
Success
112.82
5.64
37.5
5.98
25.12
31.1
None
lzattack
Master-IASD
coktailjet
Success
89.97
4.5
56.25
5.96
25.1
31.06
None
binaryattackers
Master-IASD
boldeagle
Success
135.39
6.77
43.75
4.51
21.21
25.72
None
star_wars_2
Master-IASD
readycash
Success
147.61
7.38
18.75
9.61
10.28
19.89
None
it-s-over-9000
Master-IASD
boldeagle
Success
133.69
6.68
81.25
0.02
2.59
2.61
None
jose-mourinho
Master-IASD
upnquick
Error
0
0
0
0
0
0
ModuleNotFoundError: No module named 'matplotlib'
attack_of_cifar
Master-IASD
coktailjet
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv3.weight", "conv3.bias", "bn1.weight", "bn1.bias", "bn1.running_mean", "bn1.running_var", "bn2.weight", "bn2.bias", "bn2.running_mean", "bn2.running_var", "bn3.weight", "bn3.bias", "bn3.running_mean", "bn3.running_var". size mismatch for conv1.weight: copying a param with shape torch.Size([6, 3, 5, 5]) from checkpoint, the shape in current model is torch.Size([32, 3, 5, 5]). size mismatch for conv1.bias: copying a param with shape torch.Size([6]) from checkpoint, the shape in current model is torch.Size([32]). size mismatch for conv2.weight: copying a param with shape torch.Size([16, 6, 5, 5]) from checkpoint, the shape in current model is torch.Size([64, 32, 5, 5]). size mismatch for conv2.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for fc1.weight: copying a param with shape torch.Size([120, 400]) from checkpoint, the shape in current model is torch.Size([120, 4096]).

Plots