Result table

This table was generated on 2024-09-26 at 19:32. See more results here. See last results here.

results
project_namegroup_namehostnamestatusTimeRMSEAccuracyerror_msg
BestOf2023-1
profs
coktailjet
Success
43.53
0.803
0.0
None
BestOf2023-2
profs
coktailjet
Success
182.25
0.859
26.12
None
freshtomatoes
Master-IASD
coktailjet
Success
1.36
0.872
0.28
None
tetech
Master-IASD
coktailjet
Success
90.39
0.874
0.0
None
code-brain-fuel
Master-IASD
coktailjet
Success
14.84
0.884
0.0
None
closeai
Master-IASD
coktailjet
Success
0.41
1.037
0.0
None
elcoma
Master-IASD
coktailjet
Success
0.44
1.037
0.0
None
elon
Master-IASD
coktailjet
Success
0.43
1.037
0.0
None
esi
Master-IASD
coktailjet
Success
0.47
1.037
0.0
None
just-do-it
Master-IASD
coktailjet
Success
0.43
1.037
0.0
None
matrixe
Master-IASD
coktailjet
Success
0.43
1.037
0.0
None
palm
Master-IASD
coktailjet
Success
0.46
1.037
0.0
None
rimaya
Master-IASD
coktailjet
Success
0.45
1.037
0.0
None
theshawshankredemption
Master-IASD
coktailjet
Success
0.49
1.037
0.0
None
average
profs
coktailjet
Success
0.42
1.037
0.0
None
random
profs
coktailjet
Success
0.46
1.839
14.16
None
anxisa
Master-IASD
coktailjet
Success
0.62
5.004
0.0
None
alexandre-verinotableandefficientmodel
Master-IASD
coktailjet
Error
0
100
0
bytes: b'Traceback (most recent call last):\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/generate.py", line 39, in \n P, Q = torch_matrix_factorization_gradient_descent(sum_tensor, k, alpha, lambda_, mu, ratio)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/tmf.py", line 28, in torch_matrix_factorization_gradient_descent\n R_t, R_val = utils.train_val(R_tensor, ratio)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/utils.py", line 10, in train_val\n R_t = torch.where(mask, R, torch.full_like(R, float(\'nan\')))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n'

Plots