Result table

This table was generated on 2024-09-26 at 16:05. See more results here. See last results here.

results
project_namegroup_namehostnamestatusTimeRMSEAccuracyerror_msg
freshtomatoes
Master-IASD
boldeagle
Success
1.89
0.872
0.28
None
code-brain-fuel
Master-IASD
boldeagle
Success
32.7
0.885
0.0
None
closeai
Master-IASD
boldeagle
Success
0.56
1.037
0.0
None
elcoma
Master-IASD
boldeagle
Success
0.57
1.037
0.0
None
elon
Master-IASD
boldeagle
Success
0.54
1.037
0.0
None
esi
Master-IASD
boldeagle
Success
0.61
1.037
0.0
None
just-do-it
Master-IASD
boldeagle
Success
0.64
1.037
0.0
None
matrixe
Master-IASD
boldeagle
Success
0.64
1.037
0.0
None
palm
Master-IASD
boldeagle
Success
0.57
1.037
0.0
None
anxisa
Master-IASD
boldeagle
Success
0.66
5.004
0.0
None
alexandre-verinotableandefficientmodel
Master-IASD
boldeagle
Error
0
100
0
bytes: b'Traceback (most recent call last):\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/generate.py", line 39, in \n P, Q = torch_matrix_factorization_gradient_descent(sum_tensor, k, alpha, lambda_, mu, ratio)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/tmf.py", line 28, in torch_matrix_factorization_gradient_descent\n R_t, R_val = utils.train_val(R_tensor, ratio)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/home/lamsade/testplatform/test-platform-a1/repos/Master-IASD/alexandre-verinotableandefficientmodel/utils.py", line 10, in train_val\n R_t = torch.where(mask, R, torch.full_like(R, float(\'nan\')))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n'

Plots