
Easily generate hard instances

Most combinatorial optimization problems are NP-hard, meaning that there exists a family
of instances which requires exponential-time to solve them exactly (unless P = NP). However,
in practice, a large part of the instances can be solved efficiently, especially SAT instances. It is
also known that random instances of a problem are often easy to solve (see also the Transition
Phase phenomenon).

The goal of this project is to generate a family of hard (feasible) instances, without specific
knowledge of the underlying problem (without expert rules or specific reductions), and under-
stand why these instances are hard.

Hard instances are of importance to compare different algorithms solving the same problem
or to improve the performances of an algorithm solving a specific problem (and understand where
it struggles) or to disprove some graph conjectures.

Our approach will be to move these discrete problems (starting from SAT problems) to the
continuous space and try different approaches like classical supervised Machine Learning tech-
niques (to predict how to construct hard instances) or Reinforcement Learning (Deep Q-learning,
curiosity-driven learning…) and to compare it to purely combinatorial generators (and to ran-
dom solutions). We can also think of starting from already known hard instances (SAT challenge)
and try to improve its hardness by incremental changes (hill climbing) or Monte Carlo Search.
We can also exploit known structures of SAT instances (backdoors, backbones, treewidth…). We
will also need scalability, i.e. learning on small instances and be able to generate large instances
(transfer).

Required skills

• Advanced knowledge in Machine Learning and Reinforcement Learning (Master level)

• Good knowledge in Combinatorial Optimization

• Good knowledge in some programming language

Practical information

The internship will be in LAMSADE, inside Paris Dauphine University. It will be supervised by
Florian Sikora, Benjamin Negrevergne and Florian Yger, firstname.lastname@dauphine.fr. Sub-
mit your application with your relevent grades.

The student will have access to the LAMSADE computing ressources.
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https://www.lamsade.dauphine.fr/wp/miles/computational-resources/
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