1 weberknecht

- ² Johannes Rauch ⊠[©]
- ³ Ulm University, Institute of Optimization and Operations Research, Germany

A Abstract -

- ⁵ This article describes the implementation of weberknecht(_h)¹, a solver for ONE-SIDED CROSSING
- 6 MINIMIZATION that participated in the Parameterized Algorithms and Computational Experiments
- 7 Challenge 2024.
- ⁸ 2012 ACM Subject Classification Mathematics of computing → Graph algorithms
- 9 Keywords and phrases One-Sided Crossing Minimization
- ¹⁰ Supplementary Material https://doi.org/10.5281/zenodo.12154892
- 11 https://github.com/johannesrauch/PACE-2024

12 Acknowledgements I thank Henning Bruhn-Fujimoto and Dieter Rautenbach for helpful discussions.

¹³ **1** Preliminaries

¹⁴ An instance $(G = (A, B, E), \pi_A)$ of ONE-SIDED CROSSING MINIMIZATION is a bipartite ¹⁵ graph G with n vertices, bipartition sets A and B, and a linear ordering π_A of A. The goal ¹⁶ is to find a linear ordering π_B of B that minimizes the number of crossing edges if the graph ¹⁷ were to be drawn in the plane such that

the vertices of A and B are on two distinct parallel lines, respectively, and

¹⁹ the order of the vertices of A and B on the lines is consistent with π_A and π_B , respectively.

- We assume that $A = [n_0] := \{1, \ldots, n_0\}$ and $B = \{n_0 + 1, \ldots, n_0 + n_1\}$ for some positive integers n_0 and n_1 . We think of π_A and π_B as bijections $A \to [n_0]$ and $B \to [n_1]$, respectively.
- If $\pi_B(u) < \pi_B(v)$ for $u, v \in B$, we say that u is ordered before v, or u is to the left of v.
- Let $c_{u,v}$ denote the number of crossings of edges incident to $u, v \in B$ if $\pi_B(u) < \pi_B(v)$. A mixed-integer program for ONE-SIDED CROSSING MINIMIZATION is given by

minimize
$$\sum_{\substack{u,v \in B \\ u < v}} (c_{u,v} - c_{v,u}) \cdot x_{u,v} + \sum_{\substack{u,v \in B \\ u < v}} c_{v,u}$$
subject to $0 \le x_{u,v} + x_{v,w} - x_{v,w} \le 1$ for all $u, v, w \in B, u \le v \le w$.
$$(P_I)$$

25

subject to $0 \le x_{u,v} + x_{v,w} - x_{u,w} \le 1$ for all $u, v, w \in B, u < v < w$, $x_{u,v} \in \{0,1\}$ for all $u, v \in B, u < v$.

So, u is ordered before v if and only if $x_{u,v} = 1$ for $u, v \in B, u < v$.

27 **2** Overview

The solver weberknecht(_h) is written in C++. First, the exact solver weberknecht runs the uninformed and improvement heuristics described in Section 3. Then it applies the data reduction rules described in Section 4. Last, it solves a reduced version of the mixed-integer program associated to the input instance with a custom branch and bound and cut algorithm described in Section 5. The heuristic solver weberknecht_h only runs the uninformed and improvement heuristics (except the local search heuristic).

¹ Weberknecht is the german name for the harvestman spider. It is a composite word consisting of the words Weber = weaver and Knecht = workman.

2 weberknecht

34 **3** Heuristics

We distinguish between uninformed and informed heuristics, which build a solution from the ground up, and improvement heuristics, which try to improve a given solution. Due to the reduction rules we may assume from here that there are no isolated vertices in G.

- Uninformed Heuristics. The uninformed heuristics order the vertices of B such that the scores s(v) of vertices $v \in B$ is non-decreasing:
- In the barycenter heuristic, we have $s(v) = \frac{1}{d_G(v)} = \sum_{u \in N_G(v)} u$ (recall that $A = [n_0]$). Eades and Wormald [4] proved that this method has an $\mathcal{O}(\sqrt{n})$ approximation factor, which is best possible up to a constant factor under certain assumptions.
- Let $d = d_G(v)$ and let $\{w_0, \ldots, w_{d-1}\}$ be the neighbors of v in G with $w_0 < \cdots < w_{d-1}$. In the median heuristic, the score of v is $s(v) = w_{(d-1)/2}$ if d is odd and s(v) =
- 45 In the measure measure, the sector of this $b(t) = w_{(a-1)/2}$ in this out that $b(t) = (w_{d/2-1} + w_{d/2})/2$ if d is even. Eades and Wormald [4] proved that this method is a factor 46 three approximation algorithm.
- In the probabilistic median heuristic, we draw a value x from [0.0957, 0.9043] uniformly at
- random, and the score of v is then $s(v) = w_{\lfloor x \cdot d \rfloor}$. This is essentially the approximation
- ⁴⁹ algorithm of Nagamochi [7], which has an approximation factor of 1.4664 in expectancy.

⁵⁰ Informed Heuristics. The informed heuristics get a fractional solution of the linear ⁵¹ program relaxation of (P_I) as an additional input.

- 52 The sort heuristic works like a uninformed heuristics. The score for vertex $v \in B$ is
- 53 $s(v) = \sum_{u \in B, u < v} x_{u,v} + \sum_{u \in B, v < u} (1 x_{v,u}).$
- 54 Classical randomized rounding heuristic.
- ⁵⁵ *Relaxation induced neighborhood search* [1].
- ⁵⁶ Improvement Heuristics. Assume that $\pi_B = u_1 u_2 \dots u_{n_1}$ is the current best solution.
- ⁵⁷ The *shift heuristic* that Grötschel et al. [5] describes tries if shifting a single vertex ⁵⁸ improves the current solution.
- In the *local search heuristic*, we solve a reduced version of (P_I) to optimality, where we only add variables x_{u_i,u_j} with |i-j| < w for some parameter w.

⁶¹ **4** Data Reduction

⁶² The solver weberknecht implements the following data reduction rules:

- ⁶³ Vertices of degree zero in B are put on the leftmost positions in the linear ordering π_B .
- Let $l_v(r_v)$ be the neighbor of $v \in B$ in G that minimizes (maximizes) π_A , respectively. Dujmović and Whitesides [3] noted that, if there exists two nonempty sets $B_1, B_2 \subseteq B$
- and a vertex $q \in A$ such that for all $v \in B_1$ we have that $\pi_A(r_v) \leq \pi_A(q)$, and for all $v \in B_2$ we have that $\pi_A(q) \leq \pi_A(l_v)$, then the vertices of B_1 appear before the vertices
- B_2 in an optimal solution. In this case we can split the instance into two subinstances.
- ⁶⁹ Dujmović and Whitesides [3] proved that, if π_B is an optimal solution, and $c_{u,v} = 0$ and ⁷⁰ $c_{v,u} > 0$, then $\pi_B(u) < \pi_B(v)$.
- ⁷¹ Dujmović et al. [2] described a particular case of the next reduction rule. Let $c_{u,v} < c_{v,u}$. ⁷² We describe the idea with the example in Figure 1. Imagine that we draw some edge ⁷³ $x_i y_j$ into Figure 1. If the number of edges crossed by $x_i y_j$ on the left side is at most the ⁷⁴ number of edges crossed by $x_i y_j$ on the right side for all edges of the form $x_i y_j$, then ⁷⁵ we have $\pi_B(u) < \pi_B(v)$ in any optimal solution π_B : Otherwise we could improve the
- solution by simply exchanging the positions of u and v. Note that this reduction rule is
- only applicable if $d_G(u) = d_G(v)$ as witnessed by x_2y_1 and x_2y_k (k = 5 here).

Figure 1

The value $\ell b = \sum_{u,v \in B, u < v} \min(c_{u,v}, c_{v,u})$ is a lower bound on the number of crossings of an optimal solution. Suppose that we have already computed a solution with ub crossings. Then, if $c_{u,v} \ge ub - \ell b$ for some $u, v \in B$, it suffices to only consider orderings π_B with $\pi_B(u) > \pi_B(v)$ for the remaining execution.

After the execution of the described reduction rules, some variables $x_{u,v}$ of (P_I) have a fixed value due to the constraints.

⁸⁴ **5** Branch and Bound and Cut

⁸⁵ The solver weberknecht implements a rudimentary branch and bound and cut algorithm.

⁸⁶ We use HiGHS [6] only as a linear program solver since it does not (yet) implement lazy

 Θ_{n} constraints. To avoid adding all $\Theta(n^3)$ constraints, we solve the linear program relaxation of

 (P_I) as follows.

⁸⁹ 1. Create a linear program (P) with the objective function of (P_I) and no constraints.

90 **2.** Solve (P).

3. If the current solution violates constraints of (P_I) , add them to (P) and go to 2.

Let *ub* denote the number of crossings of the current best solution. Then, until we have a optimal solution, weberknecht does the following:

- $_{94}$ 1. Solve (P) with the method described above.
- 95 **2.** If (P) is infeasible, backtrack.

 $_{96}$ 3. If the rounded objective value of P is at least ub, backtrack.

- $_{97}$ 4. If the current solution of (P) is integral, update the best solution and backtrack.
- 98 5. Run informed heuristics and branch.

99 — References

- Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods to improve mip solutions. *Mathematical Programming*, 102:71–90, 2005.
- ¹⁰² 2 Vida Dujmović, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for
- one-sided crossing minimization revisited. Journal of Discrete Algorithms, 6(2):313–323, 2008.
 Vida Dujmović and Sue Whitesides. An efficient fixed parameter tractable algorithm for
- ¹⁰⁵ 1-sided crossing minimization. *Algorithmica*, 40:15–31, 2004.
- 4 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
 Algorithmica, 11:379–403, 1994.
- Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the
 linear ordering problem. Operations research, 32(6):1195–1220, 1984.
- Qi Huangfu and J. A. Julian Hall. Parallelizing the dual revised simplex method. Mathematical
 Programming Computation, 10(1):119–142, 2018.
- Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered drawings. *Discrete & Computational Geometry*, 33:569–591, 2005.