
weberknecht1

Johannes Rauch #2

Ulm University, Institute of Optimization and Operations Research, Germany3

Abstract4

This article describes the implementation of weberknecht(_h)1, a solver for One-Sided Crossing5

Minimization that participated in the Parameterized Algorithms and Computational Experiments6

Challenge 2024.7

2012 ACM Subject Classification Mathematics of computing → Graph algorithms8

Keywords and phrases One-Sided Crossing Minimization9

Supplementary Material https://doi.org/10.5281/zenodo.1215489210

https://github.com/johannesrauch/PACE-202411

Acknowledgements I thank Henning Bruhn-Fujimoto and Dieter Rautenbach for helpful discussions.12

1 Preliminaries13

An instance (G = (A, B, E), πA) of One-Sided Crossing Minimization is a bipartite14

graph G with n vertices, bipartition sets A and B, and a linear ordering πA of A. The goal15

is to find a linear ordering πB of B that minimizes the number of crossing edges if the graph16

were to be drawn in the plane such that17

the vertices of A and B are on two distinct parallel lines, respectively, and18

the order of the vertices of A and B on the lines is consistent with πA and πB , respectively.19

We assume that A = [n0] := {1, . . . , n0} and B = {n0 + 1, . . . , n0 + n1} for some positive20

integers n0 and n1. We think of πA and πB as bijections A → [n0] and B → [n1], respectively.21

If πB(u) < πB(v) for u, v ∈ B, we say that u is ordered before v, or u is to the left of v.22

Let cu,v denote the number of crossings of edges incident to u, v ∈ B if πB(u) < πB(v).23

A mixed-integer program for One-Sided Crossing Minimization is given by24

minimize
∑

u,v∈B
u<v

(cu,v − cv,u) · xu,v +
∑

u,v∈B
u<v

cv,u

subject to 0 ≤ xu,v + xv,w − xu,w ≤ 1 for all u, v, w ∈ B, u < v < w,

xu,v ∈ {0, 1} for all u, v ∈ B, u < v.

(PI)25

So, u is ordered before v if and only if xu,v = 1 for u, v ∈ B, u < v.26

2 Overview27

The solver weberknecht(_h) is written in C++. First, the exact solver weberknecht runs the28

uninformed and improvement heuristics described in Section 3. Then it applies the data29

reduction rules described in Section 4. Last, it solves a reduced version of the mixed-integer30

program associated to the input instance with a custom branch and bound and cut algorithm31

described in Section 5. The heuristic solver weberknecht_h only runs the uninformed and32

improvement heuristics (except the local search heuristic).33

1 Weberknecht is the german name for the harvestman spider. It is a composite word consisting of the
words Weber = weaver and Knecht = workman.

mailto:johannes.rauch@uni-ulm.de
https://orcid.org/0000-0002-6925-8830
https://doi.org/10.5281/zenodo.12154892
https://github.com/johannesrauch/PACE-2024

2 weberknecht

3 Heuristics34

We distinguish between uninformed and informed heuristics, which build a solution from the35

ground up, and improvement heuristics, which try to improve a given solution. Due to the36

reduction rules we may assume from here that there are no isolated vertices in G.37

Uninformed Heuristics. The uninformed heuristics order the vertices of B such that the38

scores s(v) of vertices v ∈ B is non-decreasing:39

In the barycenter heuristic, we have s(v) = 1
dG(v) =

∑
u∈NG(v) u (recall that A = [n0]).40

Eades and Wormald [4] proved that this method has an O(
√

n) approximation factor,41

which is best possible up to a constant factor under certain assumptions.42

Let d = dG(v) and let {w0, . . . , wd−1} be the neighbors of v in G with w0 < · · · < wd−1.43

In the median heuristic, the score of v is s(v) = w(d−1)/2 if d is odd and s(v) =44

(wd/2−1 + wd/2)/2 if d is even. Eades and Wormald [4] proved that this method is a factor45

three approximation algorithm.46

In the probabilistic median heuristic, we draw a value x from [0.0957, 0.9043] uniformly at47

random, and the score of v is then s(v) = w⌊x·d⌋. This is essentially the approximation48

algorithm of Nagamochi [7], which has an approximation factor of 1.4664 in expectancy.49

Informed Heuristics. The informed heuristics get a fractional solution of the linear50

program relaxation of (PI) as an additional input.51

The sort heuristic works like a uninformed heuristics. The score for vertex v ∈ B is52

s(v) =
∑

u∈B,u<v xu,v +
∑

u∈B,v<u(1 − xv,u).53

Classical randomized rounding heuristic.54

Relaxation induced neighborhood search [1].55

Improvement Heuristics. Assume that πB = u1u2 . . . un1 is the current best solution.56

The shift heuristic that Grötschel et al. [5] describes tries if shifting a single vertex57

improves the current solution.58

In the local search heuristic, we solve a reduced version of (PI) to optimality, where we59

only add variables xui,uj
with |i − j| < w for some parameter w.60

4 Data Reduction61

The solver weberknecht implements the following data reduction rules:62

Vertices of degree zero in B are put on the leftmost positions in the linear ordering πB .63

Let lv (rv) be the neighbor of v ∈ B in G that minimizes (maximizes) πA, respectively.64

Dujmović and Whitesides [3] noted that, if there exists two nonempty sets B1, B2 ⊆ B65

and a vertex q ∈ A such that for all v ∈ B1 we have that πA(rv) ≤ πA(q), and for all66

v ∈ B2 we have that πA(q) ≤ πA(lv), then the vertices of B1 appear before the vertices67

B2 in an optimal solution. In this case we can split the instance into two subinstances.68

Dujmović and Whitesides [3] proved that, if πB is an optimal solution, and cu,v = 0 and69

cv,u > 0, then πB(u) < πB(v).70

Dujmović et al. [2] described a particular case of the next reduction rule. Let cu,v < cv,u.71

We describe the idea with the example in Figure 1. Imagine that we draw some edge72

xiyj into Figure 1. If the number of edges crossed by xiyj on the left side is at most the73

number of edges crossed by xiyj on the right side for all edges of the form xiyj , then74

we have πB(u) < πB(v) in any optimal solution πB: Otherwise we could improve the75

solution by simply exchanging the positions of u and v. Note that this reduction rule is76

only applicable if dG(u) = dG(v) as witnessed by x2y1 and x2yk (k = 5 here).77

J. Rauch 3

x1 u x2 v x3

y1 y2 y3 y4 y5

x1 ux2v x3

y1 y2 y3 y4 y5

Figure 1

The value ℓb =
∑

u,v∈B,u<v min(cu,v, cv,u) is a lower bound on the number of crossings of78

an optimal solution. Suppose that we have already computed a solution with ub crossings.79

Then, if cu,v ≥ ub − ℓb for some u, v ∈ B, it suffices to only consider orderings πB with80

πB(u) > πB(v) for the remaining execution.81

After the execution of the described reduction rules, some variables xu,v of (PI) have a82

fixed value due to the constraints.83

5 Branch and Bound and Cut84

The solver weberknecht implements a rudimentary branch and bound and cut algorithm.85

We use HiGHS [6] only as a linear program solver since it does not (yet) implement lazy86

constraints. To avoid adding all Θ(n3) constraints, we solve the linear program relaxation of87

(PI) as follows.88

1. Create a linear program (P) with the objective function of (PI) and no constraints.89

2. Solve (P).90

3. If the current solution violates constraints of (PI), add them to (P) and go to 2.91

Let ub denote the number of crossings of the current best solution. Then, until we have a92

optimal solution, weberknecht does the following:93

1. Solve (P) with the method described above.94

2. If (P) is infeasible, backtrack.95

3. If the rounded objective value of P is at least ub, backtrack.96

4. If the current solution of (P) is integral, update the best solution and backtrack.97

5. Run informed heuristics and branch.98

References99

1 Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neigh-100

borhoods to improve mip solutions. Mathematical Programming, 102:71–90, 2005.101

2 Vida Dujmović, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for102

one-sided crossing minimization revisited. Journal of Discrete Algorithms, 6(2):313–323, 2008.103

3 Vida Dujmović and Sue Whitesides. An efficient fixed parameter tractable algorithm for104

1-sided crossing minimization. Algorithmica, 40:15–31, 2004.105

4 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.106

Algorithmica, 11:379–403, 1994.107

5 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the108

linear ordering problem. Operations research, 32(6):1195–1220, 1984.109

6 Qi Huangfu and J. A. Julian Hall. Parallelizing the dual revised simplex method. Mathematical110

Programming Computation, 10(1):119–142, 2018.111

7 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number in112

two-layered drawings. Discrete & Computational Geometry, 33:569–591, 2005.113

	1 Preliminaries
	2 Overview
	3 Heuristics
	4 Data Reduction
	5 Branch and Bound and Cut

