
PACE Challenge 2024: AXS Heuristic Solver
Description
Chenghao Zhu
University of Electronic Science and Technology of China, Chengdu, China

Yi Zhou
University of Electronic Science and Technology of China, Chengdu, China

Bo Peng
Southwestern University of Finance and Economics, Chengdu, China

Abstract
The one-sided crossing minimization (OCM) problem involves arranging the nodes of a bipartite
graph on two layers (typically horizontal), with one of the layers fixed, aiming to minimize the
number of edge crossings. The OCM is one of the basic building blocks used for drawing hierarchical
graphs, but it is NP-hard. In this paper, we introduce a local search algorithm to solve this problem.
The algorithm is characterized by a dynamic programming-based neigborhoods framework and
multiple neighbor move operations. The algorithm has been implemented in C++ and submitted
to the 2024 PACE challenge.
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Supplementary Material The source code is available on GitHub (https://github.com/axs7385/
pace2024) and Zenodo (https://doi.org/10.5281/zenodo.11601355).

1 Preliminaries

The input of the one-sided crossing minimization (OCM) problem is a bipartite graph G =
((A ∪ B), E) and a fixed linear order of A. The objective is to find a linear order of B such
that the number of edge crossings in a straight-line drawing of G with A and B on two
parallel lines, following their linear order, is minimized.

For convenience, we define n = |A|, m = |B|, k = |E|. We use p to denote a linear order
of B, and pi to denote the ith node of the order.

Given an order p, for two vertices u, v ∈ B, we define cu,v as the number of edge crossings
between u, v while u is positioned in front of v. Note that cu,v ̸= cv,u because cv,u is the
number of crossings between u, v, while v is in front of u.

2 The General Framework

The graph is represented as an adjacency list from B. First, we pre-process cu,v in O(mk),
and we obtain the initial order of B by sorting according to the average number of neighbors
of vertices in B. Now, every linear order of B is called a solution.

After that, we use dynamic programming-based local search to obtain several solutions
as the initial population, and then perform crossover on them. We execute the genetic al-
gorithm until we reach half the time limit. Finally, we choose the best solution in population.
We alternate between dynamic programming local search and block local search, trying to
optimize the solution.

It is a student submission. Meanwhile, we submit a similar program on the exact and
parameterized track.
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2 The AXS Algorithm

2.1 Genetic Algorithm
The genetic algorithm in our algorithm follows the regular framework evolutionary algorithm.
We maintain a pool of 10 solutions (called chromosome using the language of evolutionary
algorithm). In each round, we randomly pick up two chromosomes p1 and p2 and use a
crossover to generate another offspring solution. The generating procedure is specified as
follows.

1. Randomly select two crossover positions, a and b, in p1, assume a < b w.l.o.g.
2. Copy the subsequence between the two positions, p1[a, ..., b], to the offspring solution

child.
3. Fill the remaining positions in child by remaining elements of B, keeping the order of

these elements the same as p2.

For example, given two parent chromosomes: Parent1 = [1, 2, 3, 4, 5] and Parent2 =
[5, 4, 3, 2, 1], we randomly select two crossover points 3, 4. Next, we copy the subsequence
between the crossover points from Parent1 to the offspring, and obtain Child = [_, _, |3, 4, |_].
Then, we fill the elements in B \ {3, 4} by following the order p2. We finally obtain
Child = [5, 2, |3, 4, |1].

2.2 Dynamic Programming-Based Local Search
The core of our solver is a local search algorithm based on an extended dynamic programming
algorithm in [1]. First, suppose that we have an order p. We let dp(i) denote the maximum
reduction in the number of edge crossings for the first i vertices, and f(l, r) denote the
reduction in the number of edge crossings for one or some move within the interval [l, r]. We
can derive the following dynamic programming transition equation:

dp(i) =

{
0 if i = 0,

maxj=0..i−1 dp(j) + f(j + 1, i) if i ∈ [1, m].

In our algorithm, we include the following types of move.

1. Insert Without loss of generality, we currently consider only left-to-right insertion. For
an order p, we move pl after pr. We call this move ”Insert”. The move can be divided into
a sequence of adjacent swaps, that is, the move is equal to swapping pl with pl+1,pl+1
with pl+2 ,..., and pr−1 with pr. After any swap between two adjacent vertices u, v, the
change of the crossing number is cv,u − cu,v. Therefore, the crossing number is changed
by

∑r
i=l+1(cpi,pl

− cpl,pi) after inserting pl after pr. By preprocessing the prefix sum of
cu,v − cv,u according to the order of p, we can quickly calculate the change in crossing
number for each insertion.
The following types of moves can all be decomposed into several insertion operations, so
our explanation will be relatively straightforward.

2. Swap
For an order p, we call the swap between pl and pr as swap move. The swap can be
divided into inserting pl after pr−1 and inserting pr before pl, the crossing number is
changed by

∑r−1
i=l+1(cpi,pl

− cpl,pi
) +

∑r−1
i=l (cpr,pi

− cpi,pr
).

3. Block-Insert
We modify the insert move by moving a single vertex to moving a continuous block and
obtaining the block-insert. Without loss of generality, we consider only the insertion
of lower-rank vertices into the higher-rank position. That is, for an order p, we move
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pl, pl+1, . . . , pl+sz−1 after pr where r > l + sz − 1 by block-insert. The crossing number
is changed by

∑l+sz−1
i=l (

∑r
j=l+sz(cpj ,pi − cpi,pj )).

4. Block-Swap
It is clear that we can also swap two blocks. For an order p, the swap between a
subsequence pl, pl+1, . . . , pl+sz−1 and another subsequence pr−sz‘+1, pr−sz‘+1, . . ., pr is
called block-swap. The crossing number is changed by

∑l+sz−1
i=l (

∑r
j=l+sz(cpj ,pi

−cpi,pj
))+∑r

i=r−sz‘+1(
∑r−sz‘

j=l+sz(cpi,pj − cpj ,pi)) after a block-swap.

This best size of a block depends heavily on the data instance. To balance time and
effectiveness, we set it as 2.

Based on the various moves mentioned above, for each subsequence in the interval [l, r],
we select the move that maximizes the reduction of the crossing number to compute f(l, r).
We can preprocess the contributions of all moves in O(m2) time. The time complexity
of each transition is also O(m2), so the overall time complexity for performing dynamic
programming is O(m2).

2.3 Block Local Search
First, suppose that we have a solution p, and we can improve it by calculating a better
solution by reordering a subsequence Block which was chosen randomdly.

Let g(S) denote the minimal number of edge crossings for the vertex set S ⊆ Block. We
can derive the following dynamic programming transition equation:

g(S) =

{
0 if S = ∅,

minu∈S(g(S \ {u}) +
∑

v∈S\{u} c(v, u)) if S ⊆ Block and S ̸= ∅.

The time complexity of this dynamic programming is O(|Block| ∗2|Block|), and the space
complexity is O(2|Block|). To balance time consumption and effectiveness, the block size is
set to 18.
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