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Abstract
The One-Sided Crossing Minimization (OCM) problem involves reducing the number of edge crossings
in a bipartite graph with a fixed vertex set. This optimization is crucial for applications in areas
such as circuit layout, network visualization, and data interpretation, where clear graph layouts
enhance usability and understanding. In the PACE 2024 competition, we developed UAIC_OCM,
a heuristic solver that combines greedy and local search techniques to address the OCM problem
efficiently.
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Supplementary Material The source code is available on Zenodo and GitHub.

1 Introduction

Graph drawing is a fundamental area in computer science and related fields, involving the
creation of visual representations of graphs to facilitate understanding and analysis. A
particular challenge within this domain is the One-Sided Crossing Minimization (OCM)
problem, which focuses on reducing edge crossings in bipartite graphs where one set of vertices
is fixed. This problem has significant implications for various applications, including circuit
layout design, network visualization, and biological data interpretation, where minimizing
visual clutter is essential for clarity and effectiveness.

The OCM problem can be formally described as follows: given a bipartite graph
G=(U,V,E) where U is a fixed set of vertices and V is a set of mobile vertices, the ob-
jective is to find a permutation of V that minimizes the number of edge crossings when edges
E are drawn between U and V. This combinatorial optimization problem is known to be
NP-hard, and exact solutions are often impractical for large graphs due to their computational
complexity.

In the PACE 2024 competition, participants were invited to develop solvers for the OCM
problem that are not only effective in reducing crossings but also efficient enough to handle
large instances within reasonable time constraints. Our contribution to this competition is
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the solver UAIC_OCM, which employs a heuristic approach combining greedy algorithms
and local search techniques to iteratively refine the arrangement of the mobile vertices.

The core strategy of UAIC_OCM involves two main operations: a greedy repositioning
of vertices and a local search optimization. Initially, vertices are repositioned one at a time
to their locally optimal positions in a way that minimizes crossings relative to the fixed
set. This is followed by a local search that focuses on optimizing short segments of the
vertex sequence, further refining the overall layout. To enhance the effectiveness of these
operations, we apply various rearrangement strategies to subsequences, such as reversing the
order, sorting by neighboring means, and random shuffling, ensuring diverse exploration of
possible configurations.

This paper details the design and implementation of UAIC_OCM, outlining the heuristic
techniques employed and their integration into a cohesive algorithm. By balancing computa-
tional efficiency with solution quality, our solver provides a practical approach to tackling
the OCM problem, demonstrating competitive performance in the PACE 2024 competition.
The source code for UAIC_OCM is available for further exploration and development.

2 Algorithm Description

2.1 Component Decomposition

To simplify the problem, we first decompose the graph into components. Each component
consists of a subset of the mobile vertices and their associated fixed vertices such that there
are no crossings between any two components. This decomposition allows us to independently
optimize each component, reducing the computational complexity of the problem. Within
each component, we merge mobile vertices that have identical adjacency lists.

2.2 Operations on the Mobile Partition

2.2.1 Greedy Operation

The greedy operation repositions each vertex in the mobile partition to its locally optimal
position within the sequence. For each vertex v, we remove it from its current position and
reinsert it at the position that minimizes the number of crossings. This process is repeated
for every vertex from left to right in the sequence.

2.2.2 Exact Operation

Following the greedy operation, an exact algorithm is performed on short segments of the
vertex sequence. This involves finding the optimal arrangement for fixed-length subsequences
and reordering them to further minimize crossings. The exact algorithm is applied sequentially
to each L-length subsequence in the sequence.

2.2.3 Iteration Process

The solver alternates between the greedy operation and the exact operation, applying them
sequentially until no further improvements in crossing reduction are observed. This iterative
process ensures that the solution progressively approaches a local minimum for the number
of crossings.
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2.2.4 Subsequence Optimization
To explore diverse configurations and avoid local optima, we apply various rearrangement
strategies to subsequences. For each subsequence, we test the following rearrangements and
apply the greedy and exact operations to each configuration, selecting the one that results in
the least number of crossings:

Reverse Order: Invert the order of the vertices in the subsequence.
Sort by Mean of Neighbors Ascending: Sort vertices based on the average position of
their neighbors in ascending order.
Sort by Mean of Neighbors Descending: Sort vertices based on the average position of
their neighbors in descending order.
Random Shuffle: Randomly shuffle the vertices to explore unbiased configurations.

2.2.5 Convergence and Final Optimization
The solver iteratively applies these optimization strategies, focusing on progressively larger
subsequences, within the available time constraints. This hierarchical approach ensures thor-
ough exploration of possible arrangements, balancing the depth of search with computational
efficiency. The process continues until no significant improvement can be achieved, providing
a near-optimal solution for the OCM problem.
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