
slimmer1

Steffen Limmer �2

Honda Research Institute Europe GmbH, Germany3

Nils Einecke �4

Honda Research Institute Europe GmbH, Germany5

Abstract6

This document describes the solver, we submitted to the heuristic track of the PACE 2024 competition7

under the user name “slimmer”. The task of the competition is to solve the one-sided minimum8

crossing problem. For this, we employ a large neighborhood search heuristic.9

2012 ACM Subject Classification Mathematics of computing → Randomized local search10

Keywords and phrases Large neighborhood search, One-sided crossing minimization11

Supplementary Material The source code is available on GitHub (https://github.com/HRI-EU/12

PACE_LNS) and Zenodo (https://zenodo.org/doi/10.5281/zenodo.11608387).13

1 Introduction14

In the one-sided minimum crossing problem, a bipartite graph G = (A ∪ B, E) is given with15

node partitions A = {l1, . . . , lL} and B = {r1, . . . , rR} and edges E. It is assumed that the16

graph is drawn, where the nodes are drawn in two parallel lines - one line with the nodes17

in A and one line with the nodes in B. The order in which the nodes in A are drawn is18

fixed. The task is to compute an order in which the nodes in B are drawn, which minimizes19

the number of pairwise crossings of edges in the drawing. Thus, a potential solution is a20

permutation of the nodes in B (or their indices, respectively).21

We employ a large neighborhoods search (LNS) heuristic [3] to solve this problem. LNS22

is a popular heuristic for solving combinatorial optimization problems. Starting with an23

initial solution, it iteratively destroys and repairs the current incumbent solution (i.e., the24

best solution found so far). If the resulting solution is better than the incumbent, it is used25

as new incumbent and otherwise it is rejected. In our case, the destroy and repair simply26

removes and reinserts nodes from/to the permutation. We employ a restart strategy to avoid27

premature convergence and a segmentation strategy to handle large problem instances. The28

solver is implemented in C/C++. The following section describes the solver more in detail.29

2 Solver Description30

2.1 Destroy and Repair Operators31

Destroy and repair operators are used to remove and to reinsert nodes from/into a given32

(partial) solution. We employ two different destroy operators:33

Random destroy, which removes randomly selected nodes from the given solution, and34

Block destroy, which randomly selects and removes a contiguous sequence of nodes from35

the current solution.36

For the repair, we also employ two different operators:37

Random insertion, which reinserts nodes at randomly selected positions of the current38

solution, and39

Greedy insertion, which reinserts each node at the (lowest) position that results in a40

minimum increase of the number of edge crossings.41

Both repair operators reinsert the nodes in the order in which they are passed to the operators.42

mailto:steffen.limmer@honda-ri.de
https://orcid.org/0000-0003-2385-7886
mailto:nils.einecke@honda-ri.de
https://orcid.org/0000-0002-2460-4955
https://github.com/HRI-EU/PACE_LNS
https://github.com/HRI-EU/PACE_LNS
https://github.com/HRI-EU/PACE_LNS
https://zenodo.org/doi/10.5281/zenodo.11608387


2 slimmer

2.2 Initialization43

We compute an initial solution by inserting all the nodes of B in increasing order of their44

indices in an at the beginning empty solution with help of the greedy insertion operator.45

2.3 Main Loop46

In the main loop, we randomly select between random and block destroy for removing nodes47

from the current incumbent solution. Random destroy is selected with a probability of 20%48

and block destroy is selected with a probability of 80%. If random destroy is selected, the49

number of nodes to remove is sampled uniformly random between 100 and 150. If block50

removal is selected, the number of nodes to remove is fixed to 50 and the removed nodes51

are randomly shuffled before they are passed to the repair operator. For the repair, greedy52

insertion is used. If the repaired solution has a lower or equal number of edge crossings than53

the incumbent solution, it is accepted as new incumbent and otherwise it is rejected.54

2.4 Prevention of Premature Convergence55

LNS is a rather local search heuristic and especially in combination with a greedy repair56

strategy, it is prone to getting stuck in a local optimum. A common countermeasure is to add57

random noise to the objective function in order to make the repair less greedy [2]. However,58

since we found this strategy to be not beneficial for the given problem, we employ another59

approach for preventing premature convergence: We do not only keep track of one incumbent60

solution, but two - a global incumbent and a local incumbent. The global incumbent is61

the best solution encountered so far. The local incumbent is the solution, the main loop is62

currently working on and it might differ from the global incumbent. At the beginning of the63

search, the global and local incumbents are identical. Whenever the number of consecutive64

iterations of the main loop, which did not yield an improvement of the local incumbent65

solution, exceeds a certain threshold (set to 2000 in the submitted solver), a new local66

incumbent is computed by slightly worsen the current global incumbent and the counter for67

unsuccessful iterations is reset to zero. More precisely, the new local incumbent is computed68

by removing 20 nodes from the global incumbent with the random destroy operator and69

reinserting the removed nodes with the random repair operator. Hence, whenever the search70

makes no more progress, it is guided away from the current local optimum without having to71

restart completely from scratch.72

2.5 Performance Improvements73

In order to be able to construct and to evaluate a high number of solutions in a short74

time, we applied different techniques to improve the performance. One of these performance75

improvements is that we precompute a crossing matrix C, where element cij of the matrix76

is the number of crossings between edges of nodes ri and rj if node ri appears before node77

rj in the permutation. With help of the crossing matrix, a solution can be evaluated very78

quickly and it allows to determine quickly how the number of crossings changes if a node is79

shifted from a position k to the next position k + 1 in the greedy insertion operator.80

Another performance improvement is that we do not evaluate a new solution, which is81

created in the main loop, from scratch. Instead, we update the objective value in the destroy82

and repair operators based on the operations, which are performed by the operators. If, for83

example, a node rj is removed, the number of crossings is reduced by the number of crossings84

between edges of node rj and edges of all other nodes of the current solution.85



S. Limmer and N. Einecke 3

Furthermore, we applied different improvements on the code level, like loop unrolling86

or storing and using a transposed version of the crossing matrix in addition to the original87

matrix in order to make memory accesses more efficient.88

2.6 Handling of Large Problem Instances89

For large instances, we cannot compute the crossing matrix since this is too time and memory90

consuming. Without crossing matrix, the evaluation of solutions and the greedy insertion91

operation becomes time consuming. Thus, we employ a special strategy to handle large92

instances with 15,000 or more nodes in B: If the number of edges exceeds 300,000, we93

compute an initial solution with the Barycenter heuristic [1] and otherwise an initial solution94

is computed via greedy insertion similar to the smaller instances. We then further optimize95

the solution segment-wise. We first divide the solution into contiguous segments of 200096

nodes and optimize the order of the nodes in each segment analogous to smaller instances97

as described in the previous subsections. Per segment, 1000 iterations of LNS are executed.98

The segment-wise optimization is repeated until the time limit is reached (or a solution with99

zero crossings is found) and in each repetition, the segment size is increased by 1000 up to a100

maximum of 5000.101

References102

1 Erkki Mäkinen and Harri Siirtola. The barycenter heuristic and the reorderable matrix.103

Informatica (Slovenia), 29(3):357–364, 2005.104

2 Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the105

pickup and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.106

doi:10.1287/trsc.1050.0135.107

3 Paul Shaw. A new local search algorithm providing high quality solutions to vehicle routing108

problems. Technical report, University of Strathclyde, 1997.109

https://doi.org/10.1287/trsc.1050.0135

	1 Introduction
	2 Solver Description
	2.1 Destroy and Repair Operators
	2.2 Initialization
	2.3 Main Loop
	2.4 Prevention of Premature Convergence
	2.5 Performance Improvements
	2.6 Handling of Large Problem Instances


