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Abstract
This document contains a short description of our solver sisyphus for the one-sided crossing min-
imization problem that we submitted to the heuristic track of the PACE challenge 2024. After
performing the well-known reduction to feedback arc set, each strongly connected component is
initially ordered by inserting the vertices one by one at their best position in the current ordering of
so-far considered vertices. The obtained initial ordering is further improved by a hill climber based
on the sifting strategy. This approach is run repeatedly and the overall best solution is output.
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1 Introduction

One-sided crossing minimization is a fundamental problem in graph drawing. For a given
bipartite graph G = (V1 ∪ V2, E) and a linear ordering τ of V1, the goal is to find a linear
ordering π of V2 that minimizes the number of crossings, that is ({u1, u2}, {v1, v2}) ∈ E2

such that τ−1(u1) < τ−1(v1) and π−1(u2) > π−1(v2), with τ−1(x) and π−1(x) giving the
position of vertex x in the respective ordering. Vice versa π(i) and τ(i) denote the vertex at
position i in π and τ , respectively.

The cost of putting a vertex at a certain position can be expressed by sums of crossing
numbers: cuv gives the number of crossings of edges incident to u or v if u would be ordered
to the left of v. Hence, the crossings incurred by having vertex u at position i in linear
ordering π is given by

i−1∑
j=1

cπ(j)u +
n∑

j=i+1
cuπ(j).

This enables insertion-based heuristics, where the vertices are added one by one, each
at the position that introduces the least number of crossings, and sifting heuristics [1] that
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reinsert vertices at another position in the ordering if it reduces the overall number of
crossings. In both cases, the best position can be computed in linear time in the length of
the ordering, given that the crossing numbers were computed beforehand. In the following,
we combine these heuristic strategies in our approach.

2 Description of Our Approach

Our solver first uses the well-known reduction of the problem to feedback arc set, which
allows for solving each strongly connected component separately. For each such component,
we solve the linear ordering problem stated above.

The solver performs repeated hill-climber runs, which consist of the following steps:
1. Find an initial linear ordering of the component using an insertion-based heuristic.
2. Improve this solution through sifting steps, i.e., reinserting a vertex at a “better” position.

The initial insertion-based heuristic iterates over the vertices in a random order and, as
stated above, inserts each vertex at its current best position (or, more precisely, one of the
best positions, in case there are multiple).

Afterwards, a vertex is repeatedly chosen at random and reinserted at a position that
reduces the number of crossings by the maximum amount. In case the number of crossings
would increase, the vertex remains at its current position. This procedure terminates if there
is no improvement during several steps. The overall best ordering is output at the time limit.

There are a few additional details that improve the performance further. First, we perform
a sifting hill-climber run after every 50 insertions during the insertion-based heuristic. The
rationale is that the insertion is better if the current ordering is closer to the optimum.
Second, after the first 60 seconds, we check, in the equivalent feedback arc set formulation of
the problem, whether there are edges that would always have been part of the solution. These
are (temporarily) removed, and the strongly connected components of the resulting subgraph
are computed. In the remaining time, the heuristic solver is run on these components, which
are often much smaller.

Finally, for large instances (more than 104 vertices in |V2|), we adapt our solver so that it
does not perform the reduction step to the strongly connected components of the feedback
arc set instance. Here, starting with the well-known barycenter heuristic [2], the sifting
hill-climber is started immediately and it performs only a single run, i.e., it is never restarted.
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