
PACE Solver Description: Bob
Sergey Pupyrev #�

Menlo Park, CA, USA

Abstract
We present Bob, a heuristic solver for one-sided crossing minimization, submitted to the 2024 edition
of the Parameterized Algorithms and Computational Experiments (PACE) challenge.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases crossing minimization, 2-layered drawing, balanced graph partitioning

Supplementary Material clone the sources at https://github.com/spupyrev/pace2024-bob or
download the code at https://doi.org/10.5281/zenodo.11551133

1 Preliminaries

The 2024 PACE challenge (https://pacechallenge.org/2024) is on the one-sided crossing
minimization problem (OSCM). The problem is to layout a bipartite graph on two layers,
with a fixed vertex order on one of the layers, so as to minimize the total number of edge
crossings. OSCM is known to be NP-hard [6,13], even for trees [3], but admits constant-factor
approximations [7, 14] and can be solved in FPT time [4, 5, 11].

Let G = (U ∪ V, E) be a bipartite graph with a partition U and V of the vertices and
edges E ⊆ U × V . The linear order of vertices in U is fixed to (1, 2, . . . , |U |). The task is to
find a linear order on V , denoted <V or simply <, such that the drawing of G with vertices
lying on two parallel lines and edges represented by straight-line segments has the minimum
number of edge crossings. The set of vertices adjacent to v ∈ V is denoted by N (v) and
deg(v) = |N (v)| is the degree of v. It is well-known that the number of crossings is fully
determined by the relative positions of pairs of vertices. That is, let σ(x, y) for x, y ∈ V be
the number of crossings between edges adjacent to x and edges adjacent to y when x < y in
the order. Then the total number of crossings in a drawing is

∑
x∈V

∑
y∈V :x<y σ(x, y).

2 Solver Overview

The solver contains three main ingredients: a set of pre-processing kernelization rules
simplifying the instance, recursively applied balanced graph partitioning, and a collection of
post-processing adjustments. The latter two steps are randomized and may produce different
results depending on the seed of the random number generator. Therefore, we apply the
algorithm multiple times with different seeds for each instance and output a solution with
the minimum number of crossings. Next we provide details on each of the three steps.

2.1 Kernelization
The goal of the step is simplify the input instance while keeping the optimal solution
unchanged. We start by removing all isolated vertices from both parts. Then we identify
and merge duplicate vertices x ∈ V, y ∈ V having N (x) = N (y). Note that after the
merging we have a weighted graph in which every edge, e, is assigned a positive integer
weight; it is straightforward to adjust the definitions of the crossing number to the weighted
case. The next rule is to merge near-duplicate vertices, called twins. A vertex x ∈ V with
N (x) = {ux

1 , . . . , ux
d}, d = deg(x) is a twin of y ∈ V with N (y) = {uy

1, . . . , uy
d} if |ux

i −uy
i | ≤ 1

for all 1 ≤ i ≤ d and all ux
1 , uy

1, . . . , ux
d , uy

d are adjacent only to x and y.

mailto:spupyrev@gmail.com
https://orcid.org/0000-0003-4089-673X
https://github.com/spupyrev/pace2024-bob
https://doi.org/10.5281/zenodo.11551133
https://pacechallenge.org/2024

2 PACE Solver Description: Bob

The last kernelization rule is based on the representation of OSCM as an instance of
the minimum feedback arc set problem (FAS). Consider a directed graph H whose vertices
are V and there is a (weighted) directed edge (x, y) whenever σ(x, y) > σ(y, x) and edge
(y, x) whenever σ(x, y) < σ(y, x). One can verify that OSCM is equivalent to solving FAS
on H [1, 8]. Thus, we find strongly connected components on H, place the components in a
topological order and solve OSCM on each of the components separately.

2.2 Balanced Partitioning

The main stage of Bob is based on the recursive balanced graph partitioning scheme, which is
often used to find one-dimensional graph layouts [2, 9, 12]. The algorithm combines recursive
graph bisection with a local search optimization at each step. Starting with an input graph
G = (U ∪ V, E) with |V | = n, we apply a bisection algorithm to obtain two disjoint subsets,
V1, V2 ⊆ V with V1 ∪V2 = V , of (approximately) equal cardinality, n/2. Then V1 is placed on
the set {1, . . . , n/2} and V2 on the set {n/2 + 1, . . . , n}. By doing so, we divide the problem
into two sub-problems, each of half the size, and recursively compute orders for the two
subgraphs induced by vertices V1 and V2, and the incident edges.

Every bisection step is a variant of the local search optimization. We start by (randomly)
splitting V into two sets, V1 and V2, of roughly equal size. Then, we iteratively exchange
pairs of vertices between V1 and V2 to improve a certain objective. The process is repeated
until a convergence criterion is met or the maximum number of iterations is reached. The
final order is obtained by concatenating the two recursively computed orders for V1 and V2.

An important aspect of the algorithm is the objective to optimize at each bisection step.
Note that at this step the order of vertices in the two parts is not yet determined. Hence,
we define and utilize the expected number edge crossings for splitting V into V1 and V2. For
x ∈ V1 and y ∈ V2, this number can be computed exactly; this is σ(x, y). For x, y ∈ V1 (or
symmetrically, x, y ∈ V2), we estimate the number of crossings via 1.05×min(σ(x, y), σ(y, x));
the motivation is that in most practical instances, there exists a solution achieving the near-
optimal bound for all pairs of vertices [10].

Finally, we stress that the lowest levels of the recursion with a few vertices can be solved
optimally via a technique described in Section 3.

2.3 Adjustments

Given an order of V , we apply several heuristics trying to reduce the number of crossings. First
heuristic considers (continuous) intervals of V of a small size, e.g., k ≤ 20, and re-orders the
vertices of each interval optimally; refer to Section 3 for our implementation of the exhaustive
search. Note that the process is iterative: once an interval is re-ordered, all overlapping
intervals might become sub-optimal. To avoid excessive runtime of the iterative optimization,
we dynamically maintain a queue of potentially sub-optimal intervals, avoiding re-optimization
of unchanged intervals. The second heuristic places single vertices of V into their (locally)
optimal positions. Consider x ∈ V ; the vertex produces

∑
y∈V :y<x σ(y, x)+

∑
y∈V :y>x σ(x, y)

crossings in the solution. We find the best position of x in the order while keeping all the
remaining vertices unchanged. Similarly, to the first heuristic, the process is iterative and
the optimal position of a vertex might change while other vertices are re-ordered.

In practice, the two heuristics are the most effective for reducing crossings at the post-
processing step. A number of less effective (but sometimes useful) heuristics are applied to
the solution; we refer to the implementation of the solver for details.

S. Pupyrev 3

3 Optimal Algorithms

This section describes two important sub-routines that are utilized throughout the algorithm
and responsible for the majority of computation cycles while running the solver. Each of
them describes an optimal algorithm for solving a special case of OSCM.

▶ Lemma 1. Let G = (U ∪ V, E) be an instance of OSCM with |V | = n and pre-computed
values σ(x, y) for all x, y ∈ V . Then the problem can be solved optimally in O(n22n) time
using O(2n) space.

Proof. We use dynamic programming to compute the optimal number of crossings for each
subset S ⊆ V ; let F[S] denote the value. Clearly, F[S] = 0 for all subsets with |S| = 1.
For |S| ≥ 2, we can choose which vertex x ∈ S is placed the last in the order. Thus,
F[S] = minx∈S

(
F[S \ {x}] +

∑
y∈S\{x} σ(y, x)

)
. There are 2n subsets of V and choosing

the last vertex and counting the corresponding crossings can be done in O(n2) steps. It is
easy to reconstruct the optimal vertex order for OSCM, given F values for all subsets. ◀

The next result describes an algorithm to optimally “merge” two lists of vertices. Note
that a special case of the algorithm (with |V1| = 1) is an optimal insertion of a vertex into
an existing vertex order.

▶ Lemma 2. Let G = (U ∪V, E) be an instance of OSCM with |V | = n, pre-computed values
σ(x, y) for all x, y ∈ V , and a partitioning of V into (ordered) lists V1 and V2. There exists
an O(n2)-time algorithm finding an optimal order, <, in which x < y whenever x <V1 y if
x, y ∈ V1 and x <V2 y if x, y ∈ V2.

Proof. Again, we use dynamic programming to compute the minimum number of crossings
of merging two lists, F[i, j] where 0 ≤ i ≤ |V1| and 0 ≤ j ≤ |V2|. It is convenient to count
only inter-list crossings between vertices of V1 and V2, as the crossings between the vertices
of V1 (or V2) are not affected by the merging. Thus, we have F[i, 0] = F[0, j] = 0 as the
base case for all i, j ≥ 1. When i ≥ 1 and j ≥ 1, we consider i-th and j-th vertices from the
lists, x = V1[i] and y = V2[j], and observe that one of them is the last in the result. That is,
F[i, j] = min

(
F[i−1, j] +

∑
1≤k≤j σ(V2[k], x), F[i, j −1] +

∑
1≤k≤i σ(V1[k], y)

)
. The optimal

order is reconstructed from the computed F values. ◀

4 Implementation Details

While Bob was originally designed to participate in the heuristic track of the PACE
challenge, it can be applied for the exact and the parameterized tracks too. For the
former track, we run the solver multiple times (32, in our implementation) with different
seeds and output the best solution only if the optimum is found in a pre-defined number of
runs (10 or more, in our implementation). For the latter track, no changes to the algorithm
in comparison to the heuristic version is necessary. We use different time limits for the
tracks (5 minutes for exact and heuristic; 1 minute for parameterized), and stop the
execution once the limit is exceeded.

We want to emphasize another variant of the solver, called lite, which skips the adjustment
techniques (Section 2.3) of the algorithm. The version is able to process very large instances
of OSCM at the cost of slightly worsened results. For example, every instance from the
public dataset (containing up to 106 vertices) is processed within 10 seconds; the result
contains less than 0.5% extra crossings on top of the known optimum.

4 PACE Solver Description: Bob

References
1 Camil Demetrescu and Irene Finocchi. Removing cycles for minimizing crossings. ACM J.

Exp. Algorithmics, 6:2, 2001. doi:10.1145/945394.945396.
2 Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and

Alon Shalita. Compressing graphs and indexes with recursive graph bisection. In International
Conference on Knowledge Discovery and Data Mining, KDD, pages 1535–1544. ACM, 2016.
doi:10.1145/2939672.2939862.

3 Alexander Dobler. A note on the complexity of one-sided crossing minimization of trees. arXiv
preprint arXiv:2306.15339, 2023.

4 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms
for one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313–323, 2008.
doi:10.1016/J.JDA.2006.12.008.

5 Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided
crossing minimization. Algorithmica, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.

6 Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theor. Comput. Sci.,
131(2):361–374, 1994. doi:10.1016/0304-3975(94)90179-1.

7 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

8 Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Matthias Mnich, Geevarghese Philip,
and Saket Saurabh. Ranking and drawing in subexponential time. In International Workshop
on Combinatorial Algorithms, IWOCA, volume 6460 of Lecture Notes in Computer Science,
pages 337–348. Springer, 2010. doi:10.1007/978-3-642-19222-7_34.

9 Ellis Hoag, Kyungwoo Lee, Julian Mestre, Sergey Pupyrev, and Yongkang Zhu. Reordering
functions in mobiles apps for reduced size and faster start-up. ACM Trans. Embed. Comput.
Syst., 23(4), 2024. doi:10.1145/3660635.

10 Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of
exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997. doi:10.7155/
JGAA.00001.

11 Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter
algorithm for one-sided crossing minimization. Algorithmica, 72(3):778–790, 2015. doi:
10.1007/S00453-014-9872-X.

12 Julián Mestre and Sergey Pupyrev. Approximating the minimum logarithmic arrangement
problem. In International Symposium on Algorithms and Computation, ISAAC, volume
248 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.ISAAC.2022.7.

13 Xavier Muñoz, Walter Unger, and Imrich Vrto. One sided crossing minimization is NP-hard
for sparse graphs. In International Symposium on Graph Drawing, GD, volume 2265 of Lecture
Notes in Computer Science, pages 115–123. Springer, 2001. doi:10.1007/3-540-45848-4_10.

14 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number
in two-layered drawings. Discret. Comput. Geom., 33(4):569–591, 2005. doi:10.1007/
S00454-005-1168-0.

https://doi.org/10.1145/945394.945396
https://doi.org/10.1145/2939672.2939862
https://doi.org/10.1016/J.JDA.2006.12.008
https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.1016/0304-3975(94)90179-1
https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/978-3-642-19222-7_34
https://doi.org/10.1145/3660635
https://doi.org/10.7155/JGAA.00001
https://doi.org/10.7155/JGAA.00001
https://doi.org/10.1007/S00453-014-9872-X
https://doi.org/10.1007/S00453-014-9872-X
https://doi.org/10.4230/LIPICS.ISAAC.2022.7
https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1007/S00454-005-1168-0
https://doi.org/10.1007/S00454-005-1168-0

	1 Preliminaries
	2 Solver Overview
	2.1 Kernelization
	2.2 Balanced Partitioning
	2.3 Adjustments

	3 Optimal Algorithms
	4 Implementation Details

