
Shadoks Approach to
One Sided Crossing Minimization
Guilherme D. da Fonseca #

LIS, Aix-Marseille Université

Abstract
We describe the solvers used by the Shadoks team in the PACE 2024 challenge. The challenge
considers solvers for the one-sided crossing minimization problem (OCM). Each instance contains a
bipartite graph with two partitions called top and bottom. The top partition comes with a vertex
order. The output is the vertex order of the bottom partition and the goal is to minimize the number
of edge crossings when the vertices of the two partitions are placed on two horizontal lines in order
and the edges are drawn as line segments.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, crossing number, heuristics, local search.

Related Version https://doi.org/10.5281/zenodo.11452654

Supplementary Material (Source Code): https://github.com/gfonsecabr/shadoks-PACE2024

Funding Work supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).

Acknowledgements We would like to thank the challenge organizers and other competitors for their
time, feedback, and making this whole event possible. We would also like to thank Yan Gerard for
the insightful discussions.

1 Introduction

The PACE challenge is an annual optimization challenge. The 2024 edition considers
the problem of the following graph drawing problem. The input is a bipartite graph
G = (V0, V1, E) where the vertices V0 are ordered. The output is an ordering of V1. The
goal is to minimize the number of edge crossings when both V0 and V1 are placed on two
horizontal lines in order and the edges are drawn as line segments. For an extensive overview
of the problem, see [7].

Numerous heuristics have been compared in [5]. We use three of these heuristics:

Barycenter: The Barycenter heuristic [6] considers that the vertices of V0 have x-
coordinates 1, . . . , |V0| and assigns the coordinate of each vertex v ∈ V1 as the average of
the coordinate of its neighbors.
Median: The Median heuristic [4] is similar to the barycenter heuristic, except that the
median is used instead of the average.
Split: We could not obtain the article describing the Split heuristic [3], but we believe
it works as follows. We randomly choose a pivot from V1. We then split the remaining
vertices of V1 into two sets, depending on whether there are fewer crossings when they
are placed to the left or to the right of the pivot. Each side is then solved recursively.

The barycenter heuristic often gives the best results in practice and is very fast. The
median heuristic is shown to provide a 3-approximation [4], but is often worse in practice.
Both heuristics can easily be coded in O(|E| + |V1| log |V1|) time.

The split heuristic is slower and the solutions are often worse than the average heuristic,
but may provide very different solutions depending on the random numbers used. In order to

mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-9807-028X
https://doi.org/10.5281/zenodo.11452654
https://github.com/gfonsecabr/shadoks-PACE2024


2 Shadoks Approach to One Sided Crossing Minimization

 2.6068×1011

 2.607×1011

 2.6072×1011

 2.6074×1011

 2.6076×1011

 2.6078×1011

 2.608×1011

 2.6082×1011

 2.6084×1011

 2.6086×1011

 2.6088×1011

 0  5

N
um

be
r 

of
 c

ro
ss

in
gs

Time (minutes)

no slice
slice with 8,...,18
slice with 8,...,30

 2.6066×1011

 2.6067×1011

 2.6068×1011

 2.6069×1011

 2.607×1011

 2.6071×1011

 2.6072×1011

 2.6073×1011

 2.6074×1011

 2.6075×1011

 0  15  30  45  60  75  90

N
um

be
r 

of
 c

ro
ss

in
gs

Time (minutes)

Figure 1 Number of crossings over 8 and 90 minutes of running time of the heuristic solver for
one solution of heuristic instance 44.gr using different parameters. Two scales of the same graph
are shown. The instance has |V0| = 65536, |V1| = 65536, and |E|/|V1| = 17.

efficiently code the split heuristic, we pre-compute the following function M : V1 × V1 → Z.
The value of M(u, v) is the difference between the number of crossings between the edges
adjacent to u and v if u is placed to the left and to the right of v. The value of M(u, v) can
be computed in O(δ(u) + δ(v)) time, where δ(·) is the vertex degree. After precomputing M ,
the split heuristic takes O(|V1| log |V1|) expected time (assuming ties are broken randomly).
As there are O(|V1|2) pairs (u, v), we only compute a value M(u, v) when it is needed, saving
the result in order not to compute it again.

Given a solution, it is important to be able to calculate the number of crossings efficiently.
There are numerous algorithms to compute the crossings in O(|V1| log |V1|) time [1, 2]. We
remark that the problem is equivalent to count the number of non-dominating pairs of points
in the plane by mapping each edge into the point defined by the x-coordinates of the two
endpoints.

2 Our Solver

In our solver, we obtain initial solutions using the barycenter, median, and split heuristics
and then improve the solutions in three different ways:

Jump: We move a (randomly chosen) vertex of V0 to the position that minimizes the
number of crossings. Using the precomputed M , this takes O(|V0|) time.
Slice: We randomly choose an interval of bottom vertices and compute a split solution
to that interval. The new order is kept if the number of crossings does not increase.
Slice-and-jump: We randomly choose an interval of bottom vertices and compute a
split solution to that interval and subsequently apply several jumps to that interval. The
new order is kept if the number of crossings does not increase.

The size of the interval in the slice greatly affects the performance of the heuristic. For
the challenge, we set this choice as follows, with the interval defined in terms of a uniformly
distributed center and a radius to assure that every element is equally likely to be in the
interval. We used the radius as the square of a uniform random variable in the range 8, . . . , 30
and 8, . . . , 18 for slice and slice-and-jump, respectively. We used the square to optimize small
intervals (that are faster) more often than large intervals.



Guilherme D. da Fonseca 3

 820000

 825000

 830000

 835000

 840000

 845000

 850000

 855000

 860000

 865000

 870000

 875000

 0  5

N
um

be
r 

of
 c

ro
ss

in
gs

Time (minutes)
 829110

 829120

 829130

 829140

 829150

 829160

 829170

 829180

 0  5

N
um

be
r 

of
 c

ro
ss

in
gs

Time (minutes)

Figure 2 Number of crossings over 8 minutes of running time of the heuristic solver for 12
independent solutions of heuristic instance 72.gr. Two different scales of the same graph are shown.
The lower bound is shown in red. The instance has |V0| = 15818, |V1| = 8772, and |E|/|V1| = 3.5.

Alternating only between jump and slice-and-jump gives very good results for most
instances. The slice approach is however faster when it is very easy to make small
improvements the solution (notably heuristic instance 44.gr). Figure 1 shows the evolution
of a solution over time, comparing the submitted version that uses slice with an 8, . . . , 30
range, the version using slice with an 8, . . . , 18 range, and the version with no slice without
jump.

We run the heuristic simultaneously on a number s of solutions. In the heuristic track,
we set s = 12, while the exact track has s = 32. Figure 2 shows the evolution of these s = 12
solutions over time. We prioritize improving the best solution so far, and proceed to the next
one when we could not improve it.

The confidence of the best solution is the number of solutions achieving the best number
of crossings divided by s. In the exact version a confidence of 3/4 is required to output a
solution. In both versions, we stop the calculation prematurely if the confidence gets to 1 (or
if the trivial lower bound is reached). The trivial lower bound is computed as the sum for
u, v ∈ V1 of the minimun number of crossings between the edges adjacent to u and v (either
u is to the left or to the right of v).

References

1 Christian Bachmaier, Florian Fischer, and Michael Forster. Radial coordinate assignment for
level graphs. In International Computing and Combinatorics Conference, pages 401–410, 2005.

2 Wilhelm Barth, Michael Jünger, and Petra Mutzel. Simple and efficient bilayer cross counting.
In Graph Drawing: 10th International Symposium, GD 2002 Irvine, CA, USA, August 26–28,
2002 Revised Papers 10, pages 130–141. Springer, 2002.

3 Peter Eades and David Kelly. Heuristics for reducing crossings in 2-layered networks. Ars
Combinatoria, 21(A):89–98, 1986.

4 Peter Eades and Nicholas C Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11:379–403, 1994.

5 Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of
exact and heuristic algorithms. In Graph algorithms and applications i, pages 3–27. World
Scientific, 2002.



4 Shadoks Approach to One Sided Crossing Minimization

6 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

7 Roberto Tamassia. Handbook of graph drawing and visualization. CRC press, 2013.


	1 Introduction
	2 Our Solver

