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Abstract
We describe the solvers used by the Shadoks team in the PACE 2024 challenge. The challenge
considers solvers for the one-sided crossing minimization problem (OCM). Each instance contains a
bipartite graph with two partitions called top and bottom. The top partition comes with a vertex
order. The output is the vertex order of the bottom partition and the goal is to minimize the number
of edge crossings when the vertices of the two partitions are placed on two horizontal lines in order
and the edges are drawn as line segments.
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1 Introduction

The PACE challenge is an annual optimization challenge. The 2024 edition considers
the problem of the following graph drawing problem. The input is a bipartite graph
G = (V0, V1, E) where the vertices V0 are ordered. The output is an ordering of V1. The
goal is to minimize the number of edge crossings when both V0 and V1 are placed on two
horizontal lines in order and the edges are drawn as line segments. For an extensive overview
of the problem, see [7].

Numerous heuristics have been compared in [5]. We use three of these heuristics:

Barycenter: The Barycenter heuristic [6] considers that the vertices of V0 have x-
coordinates 1, . . . , |V0| and assigns the coordinate of each vertex v ∈ V1 as the average of
the coordinate of its neighbors.
Median: The Median heuristic [4] is similar to the barycenter heuristic, except that the
median is used instead of the average.
Split: We could not obtain the article describing the Split heuristic [3], but we believe
it works as follows. We randomly choose a pivot from V1. We then split the remaining
vertices of V1 into two sets, depending on whether there are fewer crossings when they
are placed to the left or to the right of the pivot. Each side is then solved recursively.

The barycenter heuristic often gives the best results in practice and is very fast. The
median heuristic is shown to provide a 3-approximation [4], but is often worse in practice.
Both heuristics can easily be coded in O(|E| + |V1| log |V1|) time.

The split heuristic is slower and the solutions are often worse than the average heuristic,
but may provide very different solutions depending on the random numbers used. In order to
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Figure 1 Number of crossings over 8 and 90 minutes of running time of the heuristic solver for
one solution of heuristic instance 44.gr using different parameters. Two scales of the same graph
are shown. The instance has |V0| = 65536, |V1| = 65536, and |E|/|V1| = 17.

efficiently code the split heuristic, we pre-compute the following function M : V1 × V1 → Z.
The value of M(u, v) is the difference between the number of crossings between the edges
adjacent to u and v if u is placed to the left and to the right of v. The value of M(u, v) can
be computed in O(δ(u) + δ(v)) time, where δ(·) is the vertex degree. After precomputing M ,
the split heuristic takes O(|V1| log |V1|) expected time (assuming ties are broken randomly).
As there are O(|V1|2) pairs (u, v), we only compute a value M(u, v) when it is needed, saving
the result in order not to compute it again.

Given a solution, it is important to be able to calculate the number of crossings efficiently.
There are numerous algorithms to compute the crossings in O(|V1| log |V1|) time [1, 2]. We
remark that the problem is equivalent to count the number of non-dominating pairs of points
in the plane by mapping each edge into the point defined by the x-coordinates of the two
endpoints.

2 Our Solver

In our solver, we obtain initial solutions using the barycenter, median, and split heuristics
and then improve the solutions in three different ways:

Jump: We move a (randomly chosen) vertex of V0 to the position that minimizes the
number of crossings. Using the precomputed M , this takes O(|V0|) time.
Slice: We randomly choose an interval of bottom vertices and compute a split solution
to that interval. The new order is kept if the number of crossings does not increase.
Slice-and-jump: We randomly choose an interval of bottom vertices and compute a
split solution to that interval and subsequently apply several jumps to that interval. The
new order is kept if the number of crossings does not increase.

The size of the interval in the slice greatly affects the performance of the heuristic. For
the challenge, we set this choice as follows, with the interval defined in terms of a uniformly
distributed center and a radius to assure that every element is equally likely to be in the
interval. We used the radius as the square of a uniform random variable in the range 8, . . . , 30
and 8, . . . , 18 for slice and slice-and-jump, respectively. We used the square to optimize small
intervals (that are faster) more often than large intervals.
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Figure 2 Number of crossings over 8 minutes of running time of the heuristic solver for 12
independent solutions of heuristic instance 72.gr. Two different scales of the same graph are shown.
The lower bound is shown in red. The instance has |V0| = 15818, |V1| = 8772, and |E|/|V1| = 3.5.

Alternating only between jump and slice-and-jump gives very good results for most
instances. The slice approach is however faster when it is very easy to make small
improvements the solution (notably heuristic instance 44.gr). Figure 1 shows the evolution
of a solution over time, comparing the submitted version that uses slice with an 8, . . . , 30
range, the version using slice with an 8, . . . , 18 range, and the version with no slice without
jump.

We run the heuristic simultaneously on a number s of solutions. In the heuristic track,
we set s = 12, while the exact track has s = 32. Figure 2 shows the evolution of these s = 12
solutions over time. We prioritize improving the best solution so far, and proceed to the next
one when we could not improve it.

The confidence of the best solution is the number of solutions achieving the best number
of crossings divided by s. In the exact version a confidence of 3/4 is required to output a
solution. In both versions, we stop the calculation prematurely if the confidence gets to 1 (or
if the trivial lower bound is reached). The trivial lower bound is computed as the sum for
u, v ∈ V1 of the minimun number of crossings between the edges adjacent to u and v (either
u is to the left or to the right of v).
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