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Abstract
The 2024 PACE Challenge focused on the One-Sided Crossing Minimization (OCM) problem,
which aims to minimize edge crossings in a bipartite graph with a fixed order in one partition and
a free order in the other. We describe our OCM solver submission that utilizes various reduction
rules for OCM and, for the heuristic track, employs local search approaches as well as techniques to
escape local minima. The exact solver uses an ILP formulation and branch & bound to solve an
equivalent Feedback Arc Set instance.
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1 Introduction

In the Parameterized Algorithms and Computational Experiments (PACE) Challenge of
2024, the problem of interest was One-Sided Crossing Minimization (OCM). In this
problem, we are given a bipartite graph with vertex partitions A and B which are drawn
horizontally and in parallel. A comes with a fixed linear order and is thus called the set of
fixed vertices, while the ordering of the vertices in B is unknown (we call these vertices free).
The goal is to find an ordering of the vertices in B that minimizes the total number of edge
crossings when all edges are drawn with straight lines. Usually, exact and heuristic solvers for
OCM will first require the computation of the so-called crossing matrix or crossing numbers
[3, 6, 7, 11]. An entry cuv with u, v ∈ B denotes the number of edge crossings between edges
incident to u and edges incident to v, when u appears before v in the ordering. The penalty
graph of our OCM instance is a directed graph (B, E) where E := {(u, v) ∈ B2 | cuv < cvu}
with edge weights w((u, v)) = cvu − cuv. Sugiyama et al. [15] observed a connection between
OCM and the Feedback Arc Set of the penalty graph: An optimal ordering of the vertices
B for OCM is equal to a topological ordering when an optimal Feedback Arc Set is
removed from the penalty graph. In the following, we consider OCM instances and graphs to
be large if the solver opts not to generate and store their crossing matrix and penalty graph
due to memory limitations. In our submitted solver all instances with more than 10, 000 free
vertices are considered large.
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(b) OCM instance splittable by partitioning the
set of free vertices into {{5, 7, 9}, {6, 8, 10}}.

Figure 1 Graph splitting approaches.

2 Data Reduction Rules

The following methods are employed in the heuristic, exact and parameterized track. Before
applying data reduction rules we try to split the OCM instance into several smaller instances.
We can solve each strongly connected component of the instance’s penalty graph individually
and concatenate their solutions in the topological order of the penalty graph’s strongly
connected components (visualized in Figure 1a).

If the graph is large, then the above approach is infeasible. Instead, we try to split the
graph by partitioning the free vertices B into non-empty subsets B = {B1, B2, . . . Bk} such
that there are no vertices u, v, w ∈ A with u before v before w in the fixed order of A and sets
Bi, Bj ∈ B with u, w ∈ N(Bi) and v ∈ N(Bj). In other words the neighborhood intervals of
the elements of B do not overlap in the set of fixed vertices We can split a graph into the
induced subgraphs of each partition element and potentially further split these subgraphs
with the aforementioned splitting approach. An example OCM instance that can be split via
partitioning is Figure 1b.

Additonaly, we apply data reductions proposed by Dujmovic et al. [3]. In perticular
their rules RR1, RR2, RRLO1 in unmodified form and a modified version of their RRlarge rule
that accounts not only for an upper bound but also for the trivial lower bound described by
Nagamochi [12].

3 Heuristic Track

We use different approaches to find a heuristic solution depending on the size of the graph.
For small and medium-sized graphs, the repeated application of our methods leads to better
results, but on large graphs, even a single application may stress the resource limit. The
first step in our heuristic for small to medium graphs is to compute an initial order with the
median heuristic which was introduced by Eades and Wormald [4].

Local Search

Sifting To improve an order, we use sifting, which was first introduced by Rudell [14]. One
vertex is taken at a time and placed at the position in the order which minimizes the total
number of crossings. We do this exhaustively for all free vertices of the graph, but choose
the sequence in which we sift the vertices randomly. After applying sifting on the order
computed by the median heuristic, we apply it on random orders and store the order with
the fewest crossings.
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Swapping To escape local optima, we use force swapping if no better solution was found
for 592 iterations1 of using a random order with sifting. Force swapping is done by choosing
two vertices and swapping their positions in the order. Then, we use sifting to improve the
order while requiring that the relative position of the two vertices remains unchanged. We
iterate through all vertices in a random order, swapping each vertex with its immediate right
neighbor within the current best ordering. Subsequently, we increment the distance from the
swapped vertices in each iteration by 9 until the distance is greater than 90.

Large Graphs

For large graphs, we first compute an order with the median heuristic and try to improve it
by swapping neighboring vertices in the order until 10% of the available time is used. We
repeat the same with the barycenter heuristic [15]. Then, we use a variation of sifting to
improve the best order found so far. Instead of checking all possible positions for each vertex
in the order, we skip the vertex if the total number of crossings increases by 20,000 or more.
We sift the vertices until the time limit is reached.

4 Exact Track & Parameterized Track

For the exact solver we mainly use the idea described in the introduction to translate our
OCM to an FAS instance. Our approach for solving the FAS instance is based on an algorithm
by Grötschel et al [5]. The idea is to solve the FAS problem iteratively, by only looking at a
subset C of all cycles from the input graph G and add cycles until one can guarantee that
the solution, when only looking at the cycles C, are also optimal for the initial graph.

ILP To now solve a partial instance of feedback arc set with the cycles C, we use the
following ILP formulation, which was widely used to solve FAS [5, 8, 13]:

min
∑
e∈E

w(e) · ye

s.t. ye ∈ {0, 1} for all e ∈ E∑
e∈C

ye ≥ 1 for all C ∈ C

Where we have a variable ye for each e ∈ E, which is 1 if and only if the edge e is part of an
FAS. As a solver we use SCIP v9.0 [2] and together with row generation and a warm startup
so it can use results from the previous iteration, when solving the next iteration with more
cycles.

Branching For graphs where the upper and lower bound differ by at most 10, we use a
branch & bound algorithm to solve FAS. The algorithm branches on the edges of a cycle,
uses a meta-heuristic by Lan et al. [9] as upper bound and a packing lower bound of the
cycles.

The main reason for the use of the branching comes into play for the parameterized track.
Here, our graphs decompose into a lot of small components using the splitting described in
Section 2. When we then used SCIP to solve FAS, there was a large overhead in calling the
ILP compared to the time the ILP needed to solve the instance.

1 The exact values were found with SMAC3 using a subset of the public instances for training [10]
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