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Abstract4

This extended abstract outlines our contribution to the Parameterized Algorithms and Computational5

Experiments Challenge (PACE), which invited to work on the one-sided crossing minimization6

problem. Our ideas are primarily based on the principles of Iterated Local Search and Variable7

Neighborhood Search. For obvious reasons, the initial alternative stems from the barycenter heuristic.8

This first sequence (permutation) of nodes is then quickly altered/ improved by a set of operators,9

keeping the elite configuration while allowing for worsening moves and hence, escaping local optima.10
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1 Problem description and some reflections15

1.1 The problem16

In the one-sided crossing minimization problem, a graph G = (V, E) is given, which consists17

of a vertex set V and an edge set E. G is bipartite as there is a partition of V into two18

disjoint subsets V1, V2 (hence, V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2). We now assume19

that the nodes of V1 are arranged in a linear order and placed in one layer, while the ones of20

V2 appear in another layer parallel to the first one. Therefore, edges between V1 and V2 may21

cross, depending on the sequence of nodes in V1, V2. In it’s one-sided variation, the crossing22

minimization problem lies in arranging (ordering) the nodes in V2 – while assuming a fixed23

linear order <1 of V1 – such that the total number of edge crossings is minimal.24

Several applications for this problem can be found in the literature, with graph drawing25

as a prominent example [3].26

1.2 A lower bound and a corollary27

It follows that the solution to the problem can be characterized as finding a (cost-minimal)28

linear order <2 for V2. In any such order, two nodes a, b ∈ V2 can appear either ordered29

a < b or b < a, and the crossings count cab or (XOR) cba are part of the optimal value. A30

trivial lower bound is obtained by considering all distinct pairs a, b ∈ V2, and computing the31

sum over all min{cab, cba}-values.32

Concept 1. Based on this lower bound computation, we can construct a digraph on V2,33

introducing arcs (a, b) iff cab < cba, and arcs (b, a) iff cba < cab. In some ideal cases,34

this digraph is acyclical, and an optimal ordering <2 is quickly computed based on this35

preliminary input. Unfortunately, acyclicity is not always present. It follows that, in36

those cases, any linear order <2 breaks at least one (often: some, several) cycles, and the37

problem can be reformulated as finding a minimal-cost cycle-breaking of the constructed38

digraph. Part of the process now becomes identifying the elementary circuits of the39

digraph, e. g. by means of [4], and breaking them in an optimal manner. In our experience,40

if G becomes ‘large’, this process becomes computationally difficult.41
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Concept 2. Alternative approaches directly construct and manipulate the linear order <2 by42

considering a permutation of the nodes in V2, and hence implicitly break existing cycles43

by forcing transitivity over all binary relations of a, b ∈ V2. As the transition from the44

digraph into the permutation is a mapping from a higher into a lower dimensional space45

(i. e., a lossy compression), such approaches are more direct but fail to enumerate the46

cycles in a structured manner.47

2 Submitted algorithm48

Our approach is primarily based on the principles of Variable Neighborhood Search [2] and49

Iterated Local Search [5]. In the spirit of the classification above, we follow Concept 2, and50

consider permutations of nodes of V2.51

2.1 Preprocessing and reductions52

Reducing the size of the instance is beneficial. First, we exclude isolated nodes in V2, i. e.,53

nodes that have no edges. Then, and excluding the very large instances, all cab-values are54

pre-computed. On this basis, the reduction rules RR1 and RR2, as given in [1], are applied.55

If possible, V2 is broken down into linearly ordered, disjoint subsets, such that the nodes56

of each subset must precede the ones of the following subset in the permutation, etc. Each57

subset can then be treated as an independent sub-problem, and the search process is therefore58

accelerated. This partitioning can be computed in O(|V1| + |E|), and therefore feasible in59

cases in which pre-computing the crossings-matrix is too expensive.60

2.2 Initial permutation of V261

The starting solution stems from the barycenter-heuristic [6]. This is important, as the62

challenge organizers have published some instances for which this approach yields the optimal63

solution. In those cases, our program terminates early. In the Heuristics-Track of the64

competition, this applies to 12 of the 100 instances.65

2.3 Improvement moves66

We exhaustively search for improving moves until a local optimum is reached.67

First, the single node move tries to remove a node from it’s current position and re-insert68

in some other place in the permutation.69

Then, block moves try to move entire blocks of subsequent nodes. The size of the blocks70

range from 2 to 5 nodes. Our experiments indicate that block moves contribute to the71

performance of the algorithm only a little – but still they do.72

Improving moves are always accepted, and moves that do not change the quality of the73

current solution are considered with a certain probability in order to diversify the search.74

Several truncation-techniques are implemented in order to speed-up the search. Obviously,75

moves that contradict the order given by the reduction rules RR1 and RR2 are omitted. Also,76

when moving a node (or a block), movements are stopped once their cumulative change in77

the objective function value exceeds a certain threshold: In those cases, we do not hope for78

an improvement to show up.79

For the larger instances, i. e. the ones in which computing the crossings matrix is considered80

to be computationally too expensive, we truncate the movements further by introducing a81

maximum range (change of positions) for shifting nodes in the permutation. This is important82
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as the algorithm otherwise spends too much time re-inserting a give node before moving on83

to the next node.84

2.4 Diversification move85

Once a local optimum is reached, a subset of the permutation is reversed and search continues86

from here. We allow for a maximum of 20% of the permutation to be reversed. Based on our87

experiments, this value presents a good compromise between diversifying and intensifying88

the search.89

3 Source-code90

The source-code of our contribution has been published under the Creative Commons91

Attribution 4.0 International Public License and made available under https://doi.org/92

10.5281/zenodo.11465516.93
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