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Abstract10

We present a novel heuristic approach to efficiently find the approximate twin-width of a given graph.11

A contraction sequence is computed using a greedy sliding-window approach. The algorithm checks12

a fixed amount of vertices in every step and greedily performs the best sequence for these vertices.13

The result is improved until a time limit is reached by increasing the number of vertices looked at in14

each step of the algorithm and by running the heuristic with different vertex orderings.15
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1 Introduction18

The concept of twin-width was introduced by Bonnet et al. in 2021 [2]. Intuitively, it describes19

how much a graph differs from a cograph. Not much is known regarding twin-width other20

than it being NP-complete to determine whether a given graph has a bounded twin-width21

of at most four [1]. It is also known to be NP-hard to approximate the twin-width with an22

approximation ratio better than 5/4 [1]. This work proposes a heuristic approach to quickly23

find a contraction sequence resulting in a low twin-width for a given graph by using a greedy24

sliding-window technique.25

2 Preliminaries26

A trigraph is an undirected, simple graph G = (V, E), the edge set E(G) is partitioned into27

the sets B(G) of black edges and R(G) of red edges. A regular graph can be considered a28

trigraph for which E(G) = B(G) and R(G) = ∅. The set NG(v) of neighbours of a vertex29

v ∈ V (G) are all vertices adjacent to v by a black or red edge. A neighbour u ∈ NG(v) is30

called a black neighbour of v if uv ∈ B(G) and a red neighbour if uv ∈ R(G). The red degree31

of a vertex v ∈ V (G) is the number of red neighbours of v. A d-trigraph is a trigraph where32

each vertex has a red degree of at most d.33

A trigraph G′ is obtained from a trigraph G by contracting two, not necessarily adjacent34

vertices. Two vertices u and v are contracted by merging them into a new vertex w and35

updating the edges as follows: Every vertex in the symmetric difference NG(u)∆NG(v) is36

made a red neighbour of w. If a vertex x ∈ NG(u) ∩ NG(v) is both a black neighbour of u37

and of v it is made a black neighbour of w, otherwise x is made a red neighbour of w. All38

other edges remain unchanged. A d-sequence or sequence of d-contractions of a graph G is39

a sequence of d-trigraphs G0, G1, · · · , Gn−1 such that G0 = G and Gn−1 is the graph on a40

single vertex. For i ≥ 1 Gi is obtained from Gi−1 by contraction. The twin-width tww(G) is41

the smallest integer d for which G admits to such a d-sequence.42
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3 Data Structure43

The graph data structure uses a vector of lists of edge pointers. Edges are structs consisting44

of the edge target, edge color, a field describing whether it is actually an edge or not and45

pointers to the next, previous and reverse edge. These edge lists are ordered. Vertices46

are also structs consisting of the vertex id, whether it is actually a vertex or not, a field47

describing whether the vertex is active or not, the vertex degree, the vertex red degree as48

well as pointers to the first and last edge and the next and previous vertices. This vertex49

struct is structured in a way that it serves as a sentinel for the edge list. By storing vertices50

in a vector and in a linked list we are able to access arbitrary vertices as well as only iterate51

over active vertices. Contractions are done by iterating over the edge lists of the vertices to52

be contracted simultaneously. This approach allows us to more easily see whether two edges53

connect to the same vertex which results in the correct action being taken for each scenario.54

Anytime the twin-widht changes the current twin-width of the graph is updated accordingly.55

Edges which change color during contraction are kept track of to facilitate uncontractions.56

All other edges do not need to be saved explicitly as they remain unchanged.57

4 Solver Overview58

Our solver can be split into two major steps: a reduction step and a local search step.59

4.1 Reductions60

Only two simple and exact reductions are used. First a DegreeZeroReduction is performed61

which finds and contracts vertices of degree zero. These contractions do not contribute to the62

twin-width as no red edges can be created. Afterwards a DegreeOneReduction is performed63

which searches twins of degree one. This is done by going through all vertices and storing64

vertices of degree one in an array at the position of its neighbours id. If a vertex is already65

stored at this position two twins are found and therefore contracted. These contractions also66

do not contribute to the final twin-width. Both of these reductions run in linear time.67

4.2 Local Search68

If the input graph is sufficiently small a strategy called RedDegreeLimit is performed. The69

algorithm is started with a limit of 0. All vertex pairs are checked and contracted if the70

contraction yields a new red degree which is smaller or equal to the current limit. If no71

such vertex pair is found the limit is increased. The amount by which the limit is increased72

depends on the size and order of the graph and the number of vertices which were contracted73

in the last iteration. This is done until the whole graph is contracted. This strategy is74

expensive but computes good results.75

The main part of the algorithm is the TreeContract strategy. The idea is that contracting76

the same vertex many times leads to both a high twin-width and slow running time because77

the degree of such a vertex increases dramatically. To circumvent this, the vertices are78

contracted in tree-like manner, i.e. for |V | = 4, first the vertex pairs (1, 2) and (3, 4) are79

contracted followed by (1, 3) in the next iteration.80

To possibly find a better solution, the algorithm inspects k consecutive vertices with81

respect to a given vertex order in each step (instead of just 2). Among these k vertices the82

pair which yields the best result is contracted. In the next step, the next k vertices in the83

given order are considered. In summary this algorithm inspects a sliding window which84
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moves over the graphs vertices. This is done until |V (G)| < k after which we sequentially85

contract the remaining vertices.86

This is done twice for two different orderings which turned out to yield good results. In87

the first iteration the natural order, i.e. the order with respect to the vertex ids, is used.88

This very much depends on the input graph, but turned out to be a very good order for89

many graphs. In the second iteration a BFS ordering is used instead. This way, vertices90

which are close to each other in the graph also end up close to each other in the vertex order.91

Between any two iterations the graph is uncontracted to the point after the initial reductions92

were applied. We always store the best solution found so far.93

If there is time to spare after both iterations conclude the value for k is incremented and94

the strategies are performed again until the time limit is reached. Depending on the order of95

the input graph the starting value for k is k ∈ {3, 4, 5}. It turned out that higher k generally96

lead to better solutions, which means that the algorithm computes better solutions the more97

time is given.98
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