
Orodruin: A Heuristic Solver for Directed1

Feedback Vertex Set2

Sebastian Angrick #

Hasso Plattner Institute, University of Potsdam
Ben Bals #

Hasso Plattner Institute, University of Potsdam
3

Katrin Casel #�

Hasso Plattner Institute, University of Potsdam
Sarel Cohen # �

The Academic College of Tel Aviv-Yaffo, Israel
4

Tobias Friedrich # �

Hasso Plattner Institute, University of Potsdam
Niko Hastrich #

Hasso Plattner Institute, University of Potsdam
5

Theresa Hradilak #

Hasso Plattner Institute, University of Potsdam
Davis Issac #�

Hasso Plattner Institute, University of Potsdam
6

Otto Kißig # �

Hasso Plattner Institute, University of Potsdam
Jonas Schmidt #

Hasso Plattner Institute, University of Potsdam
7

Leo Wendt #

Hasso Plattner Institute, University of Potsdam
8

9

Abstract10

This document describes the techniques we used and implemented for our submission the Parame-11

terized Algorithms and Computational Experiments Challenge (PACE) 2022. The given problem is12

Directed Feedback Vertex Set (DFVS), where you are given a directed graph G = (V, E) and want to13

find a minimum S ⊆ V such that G − S is acyclic. Our approach first generates an initial greedy14

solution. This solution is then checked for minimality under exclusion of a single node and exchange15

of two solution nodes for one new node.16

2012 ACM Subject Classification Mathematics of computing → Graph algorithms17

Keywords and phrases directed feedback vertex set, vertex cover, reduction rules18

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2319

Supplementary Material Source code (Software): https://doi.org/10.5281/zenodo.664524520

Source code (Software): https://github.com/BenBals/mount-doom/tree/heuristic21

1 Preliminaries22

Let G = (V, E) be a directed graph. The Directed Feedback Vertex Set problem asks to find23

a minimum S ⊆ V , such that G − S is acyclic.24

Let v, w ∈ V . We define N+(v) as the outgoing neighbors of v and N−(v) as the25

incoming neighbors. We call an edge vw ∈ E bidirectional if wv ∈ E as well. Let PIE ⊆ E26

be the set of all bidirectional edges and let B ⊆ V be the set of all vertices only incident27

to bidirectional edges. We define the bidirectional neighbors N(v) as those which are28

incident using bidirectional edges. Additionally, we call D ⊆ V a diclique, if all u ∈ D have29

D \ {u} ⊆ N(u).30

Finally, let v ∈ V be given. Let V ′ = V \{v} and E′ = (E ∩(V ′ ×V ′))∪(N−(v)×N+(v)).31

We call G′ = (V ′, E′) the graph obtained from G by short cutting v. In light of the DFVS,32

this is equivalent to adding the assumption v /∈ S.33

2 Reduction rules34

We apply two reduction rules known from literature. These rules can be found in [4] and we35

adopt their nomenclature.36

© Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Niko Hastrich, Theresa Hradilak, Davis
Isaac, Otto Kißig, Jonas Schmidt and Leo Wendt;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastian.angrick@student.hpi.de
mailto:ben.bals@student.hpi.de
mailto:katrin.casel@hpi.de
https://orcid.org/0000-0001-6146-8684
mailto:sarel.cohen@hpi.de
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:niko.hastrich@student.hpi.de
mailto:theresa.hradilak@student.hpi.de
mailto:davis.issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:otto.kissig@student.hpi.de
https://orcid.org/0000-0002-9414-9206
mailto:jonas.schmidt@student.hpi.de
mailto:leo.wendt@student.hpi.de
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.5281/zenodo.6645245
https://github.com/BenBals/mount-doom/tree/heuristic
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Orodruin: A Heuristic Solver for Directed Feedback Vertex Set

PIE. Recall that PIE is the set of bidirectional edges. Now consider any edge uv between37

different strongly connected components in G−PIE. Any cycle using this edge must therefore38

use at least one bidirectional edge, which must be covered anyways, so we can safely delete39

uv.40

Improved CORE. A vertex a is a core of a diclique if the graph induced by a and its41

neighbors is a diclique. Traditionally, one now deletes N(a) from G since if S′ is optimal for42

G − N(v) then S′ ∪ N(v) is optimal for G [4]. We proceed differently and shortcut the node43

a if N+(a) or N−(a) are dicliques. While this extension is easy to prove, it is, to the best of44

our knowledge, novel.45

3 Solver Description46

After exhaustively applying the reductions we described in Section 2, we produce two47

solutions, one by a greedy procedure and another by a reduction to vertex cover. The better48

solution of both approaches is minimized further by applying 2-1 swaps until the timelimit is49

hit.50

3.1 Greedy Routine51

For the initial solution, we start with an empty set and greedily add to it the vertex of52

highest degree until we obtain a feasible DFVS. Checking for feasibility here means searching53

for a cycle in the graph. To speedup this procedure, we only search for a new cycle, once the54

old one is covered. Additionally, after a fixed number of nodes are taken into the solution,55

we reapply all reduction rules. After the initial solution is generated, we remove nodes that56

do not reintroduce a cycle when added back to the graph. This ensures that we create an57

inclusion-minimal solution.58

3.2 Reduction to Vertex Cover59

First note that if a graph contains only bidirectional edges, we can easily reduce the DFVS60

instance to a vertex cover instance by turning bidirectional edges into undirected edges.61

Initially, we find a vertex cover S in G[PIE] and check, whether S is a DFVS for G. If not,62

we find a set of vertex-disjoint cycles C in G − S − PIE using a DFS. All cycles in C are63

not covered by S, so we add a gadget to each cycle to ensure, that in the modified graph,64

there is an optimal vertex cover, which includes a v ∈ S. Finally, we iterate on the modified65

graph until the vertex cover is also a DFVS. Note, that this can happen multiple times66

since our choice of C does not guarantee that all cycles in G are covered. When we hit an67

internal timelimit before finding a feasible DFVS, we apply our greedy approach described68

in Section 3.1 for the remaining graph.69

Let G = (V, E) be an undirected graph and S ⊆ V be a cycle. Our goal is to find the70

minimum vertex cover in G that also contains a vertex in S. To achieve this, we add a clique71

of size |S| to G and connect it one-to-one with S. We call the modified graph G′. Consider72

any optimal vertex cover C in G′. Then, C contains at least |S| − 1 vertices in the new clique.73

Also, C must cover all edges between V and the clique, so it must contain at least one vertex74

in S or all vertices in the clique. If C contains all vertices in the clique, we exchange one of75

these vertices for a vertex in S and obtain an optimal vertex cover C ′ in G′ with C ′ ∩ S ̸= ∅.76

Thus, C ′ ∩ V is a optimal vertex cover of G that also contains a vertex of S.77

To solve the vertex cover instance, we first use a kernelization procedure implemented by78

the winning solver of the 2019 PACE challenge [3]. Then, we use a local-search solver [1] on79

Angrick et al. 23:3

this kernel.80

3.3 2-1 swaps81

We apply a local-search approach to improve our current solution, named 2-1 swaps. As the82

name suggests, its goal is to find 2 vertices from a given DFVS-solution and replace them83

with one vertex to form a smaller solution. The idea uses the notion of skew separator from84

Chen et al. [2].85

Consider a feasible and minimal solution set S to the DFVS problem, i.e. for all v ∈ S the86

set S − v is infeasible. Our goal is to find v, w ∈ S and u /∈ S such that (S − {v, w}) ∪ {u} is87

a feasible solution. Whenever we find such a triple (v, w, u), we swap {v, w} with u in S and88

repeat the procedure.89

We now describe how to find such a triple. First, for each vertex v ∈ S, we find all90

vertices u ∈ G − S, called candidates, such that (S − {v}) ∪ {u} remains feasible. Let the91

candidates of a given solution vertex v be Cv.92

In order to find Cv, we split the vertex v into two vertices vout, vin with out- or ingoing93

edges of v only. Let Gv := (G − S) ∪ {vout, vin}. Note that there is no edge between vout94

and vin in either direction in Gv. The candidates are now the set of all vertices x such that95

x hits all vout ⇝ vin paths in Gv.96

Note that in G − S, the vertices in Cv have a topological ordering. Also, notice that each97

cycle in (G − S) ∪ {v} has to be hit by each vertex in Cv. This implies that Cv has a unique98

topological ordering in G − S. Let τv be this ordering.99

We say that the ordered triple (v, w, u) is a swap triple if there is no vout ⇝ vin path in Gv,100

there is no wout ⇝ win path in Gw, and there is no v ⇝ w path in (G − (S ∪ {u})) ∪ {v, w}.101

Observe that a valid 2-1 swap is possible if and only if there exists such a swap triple. For102

each vertex v, we now find a w and u that give a swap triple (v, w, u) if such a w and u exist,103

as follows. Observe that (v, w, u) is a swap triple if and only if u ∈ Cv ∩ Cw and u hits all104

v ⇝ w paths in (G − S) ∪ {v, w}. Let W be the set of all vertices not reachable from v in105

G − Cv. For each w ∈ W , let cw be the first vertex in the ordering τv such that there is a106

cw ⇝ w path in (G − Cv) ∪ {cw}. If there is a vertex u in Cv ∩ Cw such that u ⪯ cw in τv107

then we return (v, w, u) as a swap triple.108

First, we prove that such a (v, w, u) is indeed a swap triple. Suppose this is not the case.109

Since u ∈ Cu ∩ Cw, this means that there is a v ⇝ w path P in (G − S) ∪ {v, w} not hit by u.110

The path P contains at least one vertex from Cv as w was not reachable from v in G − Cv.111

Let c be the last vertex in P that is from Cv. Then there is a c⇝ w path in (G − Cv) ∪ {c},112

and hence cw ⪯ c by the choice of cw. This implies that u ⪯ c by choice of u. Let P1 be the113

sub-path v ⇝ c of P . Since u does not hit P , the path P1 does not contain u. We know114

there is at least one cycle in (G − S) ∪ {v} containing Cv ∪ {v}, and hence there should be a115

c⇝ v path in (G − S) ∪ {v}, say P2. The concatenation P1 ∪ P2 gives a cycle in G − S ∪ {v}116

and hence needs to be hit by each vertex in Cv, in particular u. This means that u should117

hit P2, but this contradicts that u ⪯ c in τv.118

Next, we prove that if there is a swap triple then our procedure will find one. Suppose we119

do not find a swap triple and there is a swap triple (v, w, u). Let us consider the processing of120

u in our procedure. We have w ∈ W as u hits all v ⇝ w paths in (G − S) ∪ {v, w}. If u ⪯ cw121

then since u ∈ Cv ∩ Cw, we would have found the swap triple (v, w, u). Thus cw ≺ u. Then122

u cannot be in any v ⇝ cw path in (G − S) ∪ {v, w}. But then u has to hit all cw ⇝ w paths123

in (G − S) ∪ {v, w} as u hits all v ⇝ w paths in (G − S) ∪ {v, w}. This is a contradiction to124

the choice of cw.125

CVIT 2016

23:4 Orodruin: A Heuristic Solver for Directed Feedback Vertex Set

References126

1 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search127

algorithm for minimum vertex cover. J. Artif. Int. Res., 46(1):687–716, jan 2013. URL:128

https://dl.acm.org/doi/10.5555/2512538.2512555.129

2 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter130

algorithm for the directed feedback vertex set problem. J. ACM, 55:21:1–21:19, 2008.131

3 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. Wegotyoucovered: The132

winning solver from the pace 2019 challenge, vertex cover track. In CSC, 2020.133

4 Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Di-134

graphs. PhD thesis, Universität zu Köln, 2008. URL: https://kups.ub.uni-koeln.de/2547/135

1/Dissertation.pdf.136

https://dl.acm.org/doi/10.5555/2512538.2512555
https://kups.ub.uni-koeln.de/2547/1/Dissertation.pdf
https://kups.ub.uni-koeln.de/2547/1/Dissertation.pdf
https://kups.ub.uni-koeln.de/2547/1/Dissertation.pdf

	1 Preliminaries
	2 Reduction rules
	3 Solver Description
	3.1 Greedy Routine
	3.2 Reduction to Vertex Cover
	3.3 2-1 swaps

