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Abstract
A feedback vertex set of a graph is a set of nodes with the property that every cycle contains at
least one vertex from the set i.e. the removal of all vertices from a feedback vertex set leads to
an acyclic graph. In this short paper, we describe the algorithm for finding a minimum directed
feedback vertex set used by the _UAIC_ANDREIARHIRE_ solver, submitted to the heuristic track of
the 2022 PACE challenge.
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Supplementary Material The source code is available on Zenodo (10.5281/zenodo.6646187) and
GitHub (https://github.com/AndreiiArhire/PACE2022).

1 Preliminaries

Let G = (V, E) be a directed graph.
N−

G (v) = {u ∈ V | ∃(u, v) ∈ E ∧ ∄(v, u) ∈ E}, d−
G(v) = |N−

G (v)|;
N+

G (v) = {u ∈ V | ∄(u, v) ∈ E ∧ ∃(v, u) ∈ E}, d+
G(v) = |N+

G (v)|;
N±

G (v) = {u ∈ V | ∃(u, v) ∈ E ∧ ∃(v, u) ∈ E}, d±
G(v) = |N±

G (v)|;
G − v = (V \{v}, E ∩ {{V \{v}} × {V \{v}}});
G◦v = (V \{v}, E ∩{{{V \{v}}×{V \{v}}}∪{{N−

G (v)∪N±
G (v)}×{N+

G (v)∪N±
G (v)}}});

G is a diclique if ∀x, y ∈ V, x ̸= y and {(x, y), (y, x)} ⊂ E.
We will refer to G − v operation as vertex v removal (remove v together with all its adjacent
edges) and to G ◦ v operation as vertex v merger (connect all its predecessors with all its
successors and exclude v from the graph).

2 Solver Summary

The algorithm used by our solver has three main stages. In the first stage, it finds an initial
solution. The second stage consists of removing redundant vertices contained in the initial
solution. In the third stage, several local searches are performed based on the best solution
known so far.

3 Reduction Rules

The problem can be viewed in the following way. We have to place each vertex in a set A
or a set B such that at the end A is a minimum feedback vertex set and B is the acyclic
remainder. A group of vertices can be placed in A or B based on some verification which can
be done in a polynomial time.
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The following two operations are considered to be reductions:
If a vertex can be part of set A without affecting the solution’s optimality, we remove it
and eventually introduce it in the solution set.
If a vertex can be part of set B without affecting the optimality of the solution then we
merge it.

We make usage of 8 reduction rules described in [4], [2] and [3].

▶ Reduction Rule 1. If there exists a vertex v ∈ V and an edge (v, v) ∈ E, remove v.

In this case, vertex v contains a self-loop, it is erased and inserted into the solution.

▶ Reduction Rule 2. If there exists a vertex v ∈ V , (v, v) ̸∈ E with d−
G(v) + d±

G(v) ≤ 1 or
d+

G(v) + d±
G(v) ≤ 1, merge v.

Vertex v can have d+
G(v) = 0 or d−

G(v) = 0, then it can not be part of any cycle. Otherwise,
d+

G(v) = 1 or d−
G(v) = 1, connecting all its predecessors with all its successors and excluding

v from the graph (merge operation) will not affect the optimality. In both scenarios v is not
considered in the solution.

▶ Reduction Rule 3. If there exists a vertex v ∈ V , (v, v) ̸∈ E, min (d−
G(v), d+

G(v)) = 0 and
N±

G (v) forms a diclique, remove N±
G (v) and merge v.

The key observation here is that in a diclique at most one node will not be part of the
solution because any two vertices form a cycle. Thus the diclique can be viewed as a single
node and this way Rule 2 can be applied further.

▶ Reduction Rule 4. If there exist vertices u, v ∈ V , (u, v) ∈ E∧(v, u) ̸∈ E and u and v are in
different strongly connected components of the graph (V, E\{E∩{(x, y), ∀x ∈ V, y ∈ N±

G (x)}}),
erase (u, v).

Edges between vertices in different strongly connected components are not part of any cycle
(otherwise the vertices would be in the same component), thus all these edges can be deleted.
Furthermore, in a diclique with two vertices at least one node will be removed, so edges that
are part of a diclique can be ignored when strongly connected components are computed.

▶ Reduction Rule 5. If there exist vertices u, v ∈ V , (u, v) ∈ E ∧ (v, u) ̸∈ E and (N−
G (u) ⊂

{N−
G (v) ∪ N±

G (v)}) ∨ (N+
G (v) ⊂ {N+

G (u) ∪ N±
G (u)}), erase (u, v).

The idea with this rule is to delete a set of edges with the property that there is no
minimal cycle using them since only minimal cycles need to be broken to compute the
feedback vertex set.

The following three Reduction Rules are obtained based on the Reduction Rule 3 together
with the idea that at most one node in a diclique is not part of the solution.

▶ Reduction Rule 6. If there exists a node v ∈ V , (v, v) ̸∈ E such that {N+
G (v) ∪ N±

G (v)}
or {N−

G (v) ∪ N±
G (v)} forms a diclique, merge v.

▶ Reduction Rule 7. If there exists a node v ∈ V , (v, v) ̸∈ E and {N−
G (v) ∪ N+

G (v) ∪ N±
G (v)}

can be split in two sets, N±
G (v) is included in one of them and each set forms a diclique,

merge v.

▶ Reduction Rule 8. If there exists a node v ∈ V , (v, v) ̸∈ E, d±
G(v) = 0 and {N+

G (v)∪N−
G (v)}

can be split in at most three sets and each set forms a diclique, merge v.
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4 Stage one

In first part of the algorithm reductions rules are applied until the graph no more supports
any. If graph is not empty a promising vertex is selected to be part of the solution and it is
removed. These two operations are performed until the graph becomes empty. A vertex v is
considered the best candidate in the selection process if it maximizes among all the other
vertices either (d+

G(v) + d±
G(v)) · (d−

G(v) + d±
G(v)) or d±

G(v) · ∞ + d−
G(v) · d+

G(v).

5 Stage two

After many vertex selections, some of them may become redundant in the solution i.e. they
are not part of any cycle so they can be excluded from the feedback vertex set. To maximize
the number of excluded vertices, we take them in the reversed order of their insertion and
we introduce them in the acyclic graph. At a fixed vertex we check if the resulting graph is
acyclic or not using an optimized version of the Tarjan algorithm for computing strongly
connected components. If the graph is acyclic, the vertex will be erased from the solution
and the graph will keep the changes. This step is presented in [3] and [1].

6 Stage three

In the last part of the algorithm, some local searches are performed [3]. A local search
consists of running the same process as the one presented in stage one but on a subgraph of
G. Subgraphs are obtained by removal of a certain subset uniformly random from the best
feedback vertex set found so far together with a certain subset from the acyclic remainder.
Additionally, a slightly modified version of the algorithm from stage two is applied to the
new solution depending on the remaining time.

7 Complexity Analysis

Both selection criteria are simple but not always optimal, and add significant benefits.
Implying only the number of adjacent neighbors allows some reductions to be performed
efficiently using hash sets keeping in memory most of the data. After each update of
the graph, reductions 1 and 2 can be applied in O(1). Reduction 3 is implemented in
O((|V | + |E|) · log (|V |)) and reduction 4 in O(|V | + |E|). The rest are ran only for vertices
bounded by a small constant and we assume the complexity is O(|V | + |E|). The first two
reductions are ran after each graph change. The others are ran after each loss of around
5% − 25% of the number of edges. For every iteration among T ones, we choose to restore
around 30% of the vertices into the acyclic remainder and run the local search. As an instance
can be reduced in linear time to a graph with |V | < |E|, the final complexity of the program
is O(T · (|V | + |E| · log |E|)), based on Master’s Theorem [5], where T is the number of local
searches. T is a parameter bounded by the time limit.
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