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Abstract
Submission for the PACE challenge 2022 - heuristic track [3]. The heuristic starts by preprocessing
the input graph using reduction rules. Existing rules from the directed feedback vertex set (DFVS)
and vertex cover (VC) problems are used. Some reduction rules for the VC problem are also relaxed
to work in more cases. When the graph can no longer be reduced, a simulated annealing procedure
repeats until the stop signal is received. At the end of each cooling schedule, the heuristic also
greedily looks for one-zero and two-one swaps before starting a new cooling cycle.
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1 Preprocessing

Reduction rules are used to reduce the size of the problem so that an optimal solution for
the reduced instance can be extended to an optimal solution for the original instance. Many
reduction rules are known for the DFVS problem, mainly due to the similarities with the
VC problem. The VC problem can be reduced to the DFVS problem by replacing every
undirected edge with a cycle of length two. Therefore, reduction rules from the VC literature
can be used directly in segments of the graph that only contain cycles of length two.

Reduction rules mainly include or exclude vertices from the solution. These operations
are defined as follows.
Include u in S. Remove u from the graph along with all adjacent edges. S = S ∪ {u} and
G′ = G \ {u}.
Exclude u from S. Create new edges from each incoming neighbor to each outgoing
neighbor of u. A precondition for excluding a vertex is that it does not have an edge to
itself, in which case it must be included in S. The remaining graph is then G′ = G \ {u} and
E′ = E ∪ {(v, w) | (v, u) ∈ E ∧ (u, w) ∈ E}.

There are also folding rules that result in smaller instances but require the solution to
the reduced instance before deciding whether the removed vertices should be in the solution
or not. The reduction rules we have used during preprocessing are as follows.

Reductions based on in-degree or out-degree less than two [4]. All these vertices can be
excluded from the graph.
Self-loop reduction [4]. These vertices must be part of every feedback vertex set. There
are no self cycles in the input data. However, they can appear after other reduction rules.
PIE, CORE, and DOME rules [5]. The PIE and DOME operations remove edges that are
not part of any minimal cycle. CORE refers to a vertex whose neighbors form a clique,
and every edge (u, v) in the neighborhood implies that (v, u) also exists.
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Dominance [2] and unconfined [6] for VC. Unconfined is a generalization of the dominance
rule, which states that for two adjacent vertices u and v where N [u] ⊇ N [v], we can
include u.
Folding rules for VC based on twins, funnels, and desks [6]. These rules are applied
cautiously and only when the distance two neighborhood of the vertices involved exclusively
have cycles of length two. This is due to problems where folding can introduce new cycles
in the reduced instance that do not need to be broken for the original instance.

A few generalizations are made for some of the VC reduction rules. The dominance
reduction rule does not need to be restricted to parts of the graph with only cycles of
length two. Given two vertices u and v that form a cycle of length two, if Π[u] ⊇ N+[v]
or Π[u] ⊇ N−[v], include u in S. Where Π[u] = N+[u] ∩ N−[u]. The correctness of this
relaxation follows the same arguments as the dominance rule. Assume u was not part of the
solution, then Π(u), which includes v, would need to be included. Since Π(u) contains every
in- or out-neighbor of v, an equally large solution exists that swaps v for u.

This idea can be generalized further. Any minimal cycle can be used as a starting point
instead of requiring a cycle of length two. The rule applies if some vertex u dominates every
other vertex in the cycle. The solver uses this rule with cycles of lengths two and three.

The twin rule can also be relaxed. Given u and v where N+(u) = N+(v) and N−(u) =
N−(v), if |N+(u)| = 2 or |N−(u)| = 2 they can both be excluded from S. The argument for
this is the same as the degree 1 rule. You can always choose the two neighbours instead of u

and v.
Some less general patterns are also included. Given a vertex u with exactly two in or out

edges, if these two neighbors form a cycle, exclude u. If u had two in and two out edges, it is
sufficient that any two neighbors form a cycle. The idea is that after breaking this cycle, u

would have in- or out-degree one.

2 Simulated Annealing

The simulated annealing strategy is a modified version of the heuristic by Galinier et al. [1].
The main idea is to consider the complement problem of finding a maximum induced forest
(the remaining vertices are the feedback vertex set). The forest is represented by a topological
ordering. This representation gives a natural neighborhood of modifying moves that maintain
a valid solution. A move consists of inserting a vertex u from the current feedback vertex set
into the topological ordering at a specific position. To maintain a valid topological ordering,
the outgoing neighbors before u and incoming neighbors after u are removed. Not every
position is considered. Only the position just before the first outgoing neighbor or after the
last incoming neighbor is considered. These positions will not have conflicts with either the
in- or out-neighbors. Restricted to such moves that only have conflicts among either the in-
or out-neighbors, these positions also minimize the number of conflicts.

Similarly to Galinier et al. [1], our heuristic uses a classical simulated annealing strategy
with a geometric cooling schedule. The temperature T , initialized to T0, is used to accept
or reject moves. If the number of conflicts for a particular move is C, the move would be
accepted if either C ≤ 1 or e

−(C−1)
T ≥ rand(). Where rand() returns a random value between

zero and one. Several random moves are performed before the temperature decreases along
T = T ∗α. When T reaches a fixed Tf , the heuristic looks for greedy improvements, described
in the next section, before setting T = T0 and continuing. The number of random moves
before decreasing the temperature starts from one at T = T0 and then grows linearly up to
|V | at T = Tf .
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3 One-zero and Two-one Swaps

The one-zero swaps use a breadth-first search (bfs) to find vertices that do not cause any
cycles if added. Such a vertex could exist not only because of the random nature of the
preceding search but also because a back edge in the topological ordering does not necessarily
imply the existence of a cycle. In the worst case, checking every vertex costs |V |2 time.
However, in practice, the search usually terminates quickly, and the number of vertices
to check can be much smaller than |V |. Therefore, the one-zero swap step is performed
regardless of the size of the graph.

Two-one swaps are identified by first finding every one-one swap for each vertex not
currently in the topological ordering. To find every one-one swap for a vertex u, we split
it into two abstract vertices s and t, each having only the out and in edges, respectively.
Next, s is placed at the start of the topological ordering, and t at the end. Remove every
source and sink in two passes, except s and t. At this point, every vertex remaining is part
of some s − t path. Finally, starting from s, scan across the ordering while keeping track of
the size of the edge cut. If at some vertex it becomes zero, that vertex is a one-one candidate.
With this information, finding a two-one swap is only a matter of finding two vertices with a
common one-one swap. These two vertices may create a new cycle, so a breadth-first search
is also needed at the very end before committing to the swap. In the worst case, looking for
two-one swaps could have a |V |3 running time and is also slow on large graphs in practice.
Therefore, the two-one swaps are only performed on smaller instances.

4 Implementation Details

The constants used in the final version of the solver are picked based on experiments from
the public instances. The initial temperature T0 = 0.15, and the final temperature Tf = 0.05.
These values are modified slightly depending on the graph and the initial solution after greedy
one-zero swaps. The solution size compared to |V | increases T0 by at most 0.3. Where a
smaller solution moves T0 more, and if they are almost equal, T0 is unchanged. Furthermore,
the average move cost increases T0 and Tf by at most 0.1, where higher move costs increase
it more. The α used is always 0.999.

The topological ordering is stored using a double-linked list, implemented using two
fixed-size arrays. Each vertex also has an integer token representing its relative position in the
topological ordering. Meaning vertices earlier in the list have smaller tokens, and vertices later
have larger ones. This makes it inexpensive to find the two candidate positions mentioned
earlier. It is sufficient to look through the neighbors and find the highest token among the
in-neighbors or lowest among the out-neighbors. Performing a move is also inexpensive in
most cases by simply changing the next and previous pointers in the double-linked list. The
token is set to the midpoint between the previous and next vertices. There is a potential
to run out of space between these two tokens. When this occurs, the values for the entire
topological ordering are generated again. To decrease the frequency of this relabeling step,
the tokens are spaced out in the entire 64-bit range.

CVIT 2016
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