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Abstract
A directed graph is formed by vertices and arcs from one vertex to another. The feedback vertex set
problem (FVSP) consists in making a given directed graph acyclic by removing as few vertices as
possible. In this write-up we outline the core techniques used in the heuristic feedback vertex set
algorithm, submitted to the heuristic track of the 2022 PACE challenge.
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1 Problem Description

Let G = (V, E) be a directed graph, where V is the vertex set and E ⊆ V × V is the edge
set. The feedback vertex set problem is to find a minimum subset X ⊆ V such that, when
all vertices of X and their adjacent edges are deleted from G, the remainder subset G′ ⊆ G
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is acyclic. The subset X is a feedback vertex set of the graph G. In the challenge of PACE
2022, for heuristic algorithms, the process was limited in 10 miniutes.

2 Reduction Rules

Reduction Rules play an important role in solving FVSP because it improves the efficiency of
algorithm. A contraction (reduction) operation reduces the original graph while it preserves
the information necessary for finding the minimum feedback set. We adopt eight reduction
rules to eliminate some vertices and edges, and deduce that some vertices must be included
in the optimal solution. Five contraction operations have been proposed in Levy and Low
(1988) [4]. More recently, three new contraction operations have been presented in Lin and
Jou (1999) [5]. Our implementation adopted the directed graph reduction method in [5].
The reductions simplifies the graph efficiently and does not take too long.

3 Simulated Annealing

In order to tackle FVSP, we propose a simulated annealing algorithm which is based on the
local search framework. The earliest idea of simulated annealing algorithm (SA) was proposed
by N. Metropolis et al. [1] in 1953. It generates an initial solution, than iteratively improves
the incumbent solution by a local search procedure. At each iteration of the algorithm, it
first evaluates the neighborhood of the current solution and determines whether to perform
the current neighborhood move by ∆T . If the current solution improves the best solution
found so far, then the best solution is updated with the current. Finally, when the specified
termination condition is met, the algorithm terminates and returns the best solution.

3.1 Initialization
This procedure is divided into two stages to generate an initial solution. In the first stage,
the original problem is transformed into a vertex cover problem [2, 6] and then solves the
problem by executing a heuristic algorithm under limited time. The execution time of the
heuristic algorithm is determined according to the ratio rb of bidirectional edges. The greater
the value of rb, the greater the execution time.

rb =
2 ∗

∑
i,j∈V (eij ∗ eji)

|E|
(1)

In the second stage, the descent heuristic algorithm is used to further optimize the
solution. Finally, the initial solution X0 of the problem is obtained.

3.2 Neighborhood Structure and Evaluation
A directed graph with no directed cycles is named a directed acyclic graph (DAG). Every
DAG has a topological ordering, i.e. an ordering of its vertices such that the starting-point
of every arc occurs earlier in the ordering than the endpoint of the arc. Conversely, the
existence of a topological ordering in a graph proves that this graph is acyclic.

In order to solve FVSP, we adopts a neighborhood move based on add and remove
operations [3]. Specifically, an add operation consists of inserting a new vertex j /∈ X at
some particular position into the sequence and, at the same time, a remove operation used
to remove the vertices that would now violate the precedence constraint. Based on the
incumbent solution X, performing the operations produces a new neighborhood solution X ′.
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To obtain the best neighboring solution and improve the incumbent solution X, our solver
uses the insert policies that in-coming and out-coming neighbors. Specifically, a vertex v

can be inserted in the sequence at only two different positions, which are after its numbered
in-coming neighbors, or just before its numbered out-going neighbors.

However, the simulated annealing algorithm used in [3] tends to end prematurely, so after
reaching the local optimum, we increase the temperature of simulated annealing appropriately,
and randomly delete some vertices in the topology sequence in order to jump out of the local
optimum, so that the algorithm can rerun. The algorithm terminates until the limit time is
reached. In addition, in the later period of the simulated annealing run, a cache acceleration
method is also applied.

In particular, we lazily transform the FVSP to the set covering problem when the number
of cycles is not too large, and use the set covering algorithm to further optimize current
solution X.

3.3 Data structure
To efficiently update topological sequences, we used a data structure that can perform insert,
delete and compare the order of two vertices in constant amortized time.

In our implementation, a method of labeling vertices is used. Each vertex in the sequence
has a label that determines their order in the topological sequence. The labels are sparse
enough, which is achieved by continuously dividing sufficiently large intervals, so that there
will be spare labels between every two adjacent vertices in the topological sequence. When a
vertex is inserted, it is assigned a label that is half the sum of the preceding and succeeding
labels in topological order. If the spare label does not exist, the label of related vertices in
the topology sequence needs to be adjusted.
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