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Abstract
In the challenge of Parameterized Algorithms and Computational Experiments 2022, a solver needed
to find the best solution of each Directed Feedback Vertex Set instance. We submitted our heuristic
solver Huawei_TCS_DFVS_Solver, which treated the challenge as a problem of finding the longest
sequence that was a topological ordering of a subgraph of the graph. The solver consists of three
parts: (1) preprocessing, (2) initial sequence generation, and (3) simulated annealing that introduces
adaptive heating and intercomponent parallelism.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Directed Feedback Vertex Set, Local search, Heuristic search

Digital Object Identifier 10.4230/LIPIcs.PACE.2022.1

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6638370

© Yuming Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo Sun,
Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu and Zhipeng Lv;
licensed under Creative Commons License CC-BY 4.0

Parameterized Algorithms and Computational Experiments 2022.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuming_du@foxmail.com
mailto:qingyun_zhang@hust.edu.cn
mailto:xujunzhou@huawei.com
mailto:zhangshungen@hust.edu.cn
mailto:liaochao4@huawei.com
mailto:chenzhihuai1@huawei.com
mailto:sun_zb@hust.edu.cn
mailto:suzhouxing@hust.edu.cn
mailto:junwending@hust.edu.cn
mailto:c.wu@huawei.com
mailto:lupinyan@huawei.com
mailto:zhipeng.lv@hust.edu.cn
https://doi.org/10.4230/LIPIcs.PACE.2022.1
https://doi.org/10.5281/zenodo.6638370
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Huawei_TCS_DFVS_Solver Description

1 The challenge and the sequence

For a directed graph G = (V, A), the Directed Feedback Vertex Set (DFVS) is a subset
X ⊆ V such that, when all vertices of X and their adjacent arcs are removed from G, the
remainder is acyclic. In the challenge of Parameterized Algorithms and Computational
Experiments (PACE) 2022, a solver needed to find the minimum DFVS of the input graph.
Additionally, for heuristic algorithms, the process was limited in 10 miniutes.

Each DFVS and the Directed Acyclic Graph (DAG) obtained by removing vertice in the
DFVS from the graph are one-to-one correspondence, so to find the minimum DFVS we can
look for the maximum DAG.

A topological ordering is possible if and only if the directed graph is acyclic. A DAG
has at least a topological ordering, at the same time a topological ordering contains exactly
all vertices of the DAG. So, similar to [1], we can solve the challenge by finding the longest
sequence. The sequences represent topological orderings of subgraphs of the graph.

2 The solver

The solver consists of three parts: (1) preprocessing, (2) initial sequence generation, and
(3) simulated annealing. The preprocessing uses some simple rules to reduce the size of the
graph. The initial sequence generated speeds up the search process. The simulated annealing
is the main part of the searching process.

2.1 Preprocessing
The solver extracts preprocessing rules from [2] and applies them repeatedly to the input
graph until the graph keeps unchanged in a round. The rules are listed below.

When the in-degree or out-degree of a vertex is zero, mark the vertex as "in-DAG" and
remove the vertex from the graph.
When the vertex is a direct successor of itself, mark the vertex as "in-DFVS" and remove
the vertex from the graph.
When the in-degree of a vertex is one, mark the vertex as "in-DAG" and merge the vertex
into its direct predecessor. A similar rule is applied to vectice whose out-degree are ones.
Obtain the Strongly Connected Components (SCCs) of the graph ignoring the bidirected
arcs. Arcs whose heads and tails are in different components can be removed.
When any two vertice in a vertice set S are connected by a bidirected arc, S is called a
bidirected clique. If there’s a vertex v not connected to any vertex out of S, mark v as
"in-DAG" and others in S as "in-DFVS", remove S from the graph afterwards.
If a point m has a non-bidirected arc to n, m is called a non-bidirected predecessor of n

and n is called a non-bidirected successor of m. Considering an arc from m to n, if all
the non-directed predecessors of m are predecessors of n, the arc can be removed from
the graph without affecting the solution. The same is true for the case where all the
non-directed successors of n are successors of m.

2.2 Initial sequence generation
Compared with starting from an empty sequence, generating an initial sequence and starting
from it can speed up the search process. The solver uses a greedy strategy to generate the
initial sequence. After backing up the graph, the solver loops until the graph is empty, after
which the graph is restored. In each round the solver finds the vertex with maximum score
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and attaches it to the end of the sequence, then the solver removes it and other vertice that
violate topological ordering rules from the graph. Here, the score of a vertex v is calculated
as the in-degree of v plus the out-degree of v and all its predecessors.

2.3 Simulated annealing
The basic framework for the simulated annealing is taken from [1]. In each round the solver
probabilistically receives moves until a certain number of moves or a timeout. In the former
case the solver scales down the temperature and continues the cycle, and in the latter it
outputs the longest sequence in history. After getting the final sequence, the solver filters
out the vertice in the preprocessed graph that are not in the final sequence and integrates
them with the vertice marked as "in-DFVS" in the preprocessing to get the final result.

2.3.1 Move mechanism
The action of inserting a new vertex into the sequence and removing other vertice that violate
the topological ordering rules is called a move. Making a move needs two arguments: the
new vertex and the insert position. For the former, the solver randomly pick a vertex from
all vertice in the preprocessed graph but not in the sequence as the new vertex. For the
latter, same as [1], the solver randomly chooses between two positions for the insert position:
(1) in front of the most preceding vertex in the sequence among the successors of the new
point, or (2) after the most posterior vertex in the sequence among the predecessors of the
new point.

2.3.2 Adaptive heating
In the late stage of simulated annealing, the sequences are difficult to make a move, which
affects the efficiency of local search. Therefore, the solver introduce adaptive heating to
improve the diversification.

A round of simulated annealing fails when a longer sequence is not found in the round.
Here we refer to one single cycle containing maxMove moves as a round. After a certain
number of consecutive failures, the temperature is raised to that before the failures. The
upper limit of the number of consecutive failures is also raised when heating.

2.3.3 Intercomponent parallelism
We can note that more than 1/5 of the sample graphs given in PACE 2022 have multiple
SCCs after preprocessing. Thus, the solver implements the mechanism of intercomponent
parallelism by performing simulated annealing in each component sequentially in each round,
keeping parameters, such as the temperature and the upper limit of the number of consecutive
failures, independent among the components.
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