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Abstract The feedback vertex set problem (FVSP) consists in making a given directed
graph acyclic by removing as few vertices as possible. In spite of the importance of this
NP-hard problem, no local search approach had been proposed so far for tackling it.
Building on a property of acyclic graphs, we suggest in this paper a new representation
of the solutions of the FVSP (feedback sets). Thanks to this solution representation, we
are able to design a local transformation (equivalent to a neighborhood) that changes
a feedback set into a new one. Based on this neighborhood, we have developed a
simulated annealing algorithm for the FVSP. Our experiments show that our algorithm
outperforms the best existing heuristic, namely the greedy adaptive search procedure
by Pardalos et al.

1 Introduction

In a directed graph, a feedback set is a set of vertices that intersects any cycle of the
graph. Given a directed graph, the goal of the Feedback Vertex Set Problem (FVSP) is
to find a feedback set with a minimum cardinality. In other words, the problem consists
in making the graph acyclic by removing as few vertices as possible. The FVSP has
applications in several areas, including program verification (Seymour 1995), deadlock
resolution, and Bayesian inference (Yehuda et al. 1994).

The FVSP is NP-hard (Garey and Johnson 1979; Yannakakis 1978). This problem
has been extensively studied (see Festa et al. 2009 for a recent survey), especially from
the standpoint of approximation algorithms (Bafna et al. 1994; Becker and Geiger
1979; Monien and Schultz 1981; Qian et al. 1996). On the other hand, very few
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heuristics have been proposed in order to tackle the FVSP. To the best of our knowledge,
the only heuristics described in the literature are greedy heuristics and the Greedy
Randomized Adaptive Search Procedure (GRASP), both proposed in Pardalos et al.
(1999) and Festa et al. (2001).

So far, local search has never been applied to the FVSP. Applying local search to a
combinatorial optimization problem (such as the FVSP) necessitates to define a search
space (the set of configurations), an evaluation function and a neighborhood function—
such a triplet is what we name a local search approach in the following. Assuming that
a configuration is simply a feedback set, and the evaluation function (to be minimized)
the cardinality of the set, it is still necessary to define an appropriate local operation
(a move mechanism) that transforms a feedback set into a new one. If we consider an
operation that simply transforms a feedback set into a new set of vertices (for example,
simply inserting or removing a vertex, or swapping two vertices), it is costly in general
to determine whether the new set is a feedback set or not—as it is already noticed in
Pardalos et al. (1999). The above considerations illustrate the difficulties encountered
if one wants to design a neighborhood for the FVSP; this explains why no local search
approach was known so far for tackling this problem.

In this paper, a practical local search approach is proposed for the first time
for tackling the FVSP. This approach relies on a new representation of the con-
figurations. While configurations still correspond to legal feedback sets, they are
no longer represented as sets. Thanks to the proposed solution representation, it
becomes possible to design a practical move mechanism. Based on this local search
approach, we have developed a simulated annealing algorithm, named the Simu-
lated Annealing for the Feedback Vertex Set Problem, SA-FVSP in short. Experi-
ments conducted with SA-FVSP show that our algorithm performs much better than
GRASP.

The rest of the paper is organized as follows. A review of literature is first presented
in Sect. 2. The proposed local search approach is described in Sect. 3. The SA-FVSP
algorithm is detailed in Sect. 4. Section 5 is devoted to computational results. Finally,
concluding remarks are given in Sect. 6.

2 Related work

Feedback set problems include several interrelated problems whose goal is to find a
minimum-weight (or minimum cardinality) set of vertices (or arcs) that intersect all
the cycles of a given graph. There are different versions of the problem, depending
on whether the graph is directed or undirected, and the vertices (arcs) are weighted
or unweighted. These problems have been extensively studied in the literature—the
recent survey by Festa et al. (2009) devoted to them quotes about a hundred citations.
In particular, active research has been conducted from the standpoint of approximation
algorithms (Bafna et al. 1994; Becker and Geiger 1979; Monien and Schultz 1981;
Qian et al. 1996). The particular problem tackled in this paper is the feedback vertex
set problem (FVSP), whose goal is to find a minimum-cardinality set of vertices that
intersects any cycle in a given (unweighted) directed graph. This problem is (in its
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decision version) one of the 21 problems proven to be NP-complete by Karp in 1972
(Garey and Johnson 1979; Yannakakis 1978). Several exact algorithms have been
proposed in the literature, notably a branch and bound algorithm developed in Lin
and Jou (1999). On the other hand, very few heuristics have been designed for this
problem. The only heuristics described so far in the literature are greedy heuristics
and the Greedy Randomized Adaptive Search Procedure (GRASP), both proposed in
Pardalos et al. (1999) and Festa et al. (2001).

Graph reduction plays an important role in solving FVSP because it improves the
efficiency of both exact algorithms and heuristics. A contraction (reduction) operation
reduces the original graph while it preserves the information necessary for finding the
minimum feedback set. Five contraction operations have been proposed in Levy and
Low (1988). More recently, three new contraction operations have been presented in
Lin and Jou (1999). Reduction has been exploited in exact algorithms, notably Lin and
Jou (1999), and in heuristics (Pardalos et al. 1999). In the following of this section,
we detail the description of the GRASP heuristic because we will use the results of
GRASP as a basis of comparison for those of our own heuristic.

The principle of the GRASP metaheuristic (Feo and Resende 1995) is to generate a
solution with a randomized greedy heuristic, and then to improve its quality thanks to
a refinement procedure (typically a local search heuristic). This process is reiterated
a large number of times and the best solution found is returned. Pardalos et al. have
adapted GRASP to the FVSP in Pardalos et al. (1999) and Festa et al. (2009). The prin-
ciple of the greedy randomized construction procedure used in this GRASP algorithm
is as follows. Starting from the whole graph (corresponding to an empty feedback
set), a vertex is removed from the graph (equivalently, this vertex is introduced into
the feedback set). Then, reduction is applied. This process is repeated until there are
no more cycles in the graph. Finally, a refinement procedure is applied to the feedback
set.

The vertex selected on each iteration is chosen according to a greedy function.
Three different functions have been tested in Pardalos et al. (1999). The principle
of these functions is to elect a vertex that has a large number of incoming and out-
going vertices. The best greedy function identified by the authors is the product of
the incoming degree by the outgoing degree. To select a vertex, the algorithm first
introduces into a restricted candidate list (RCL) all vertices whose greedy score is
greater than R times the largest greedy function value—where R(0 ≤ R ≤ 1) is
the randomization parameter of the algorithm. Then, a vertex is chosen randomly
from the RCL. Note that the reduction operations applied are those proposed in Levy
and Low (1988). The goal of the refinement procedure is simply to remove redun-
dant vertices from the feedback set: this is done by testing, for each vertex in the
feedback set, if it can be removed (i.e., reintroduced into the graph) without creating
cycles.

Experiements performed with GRASP on two data sets are reported in Pardalos et al.
1999. The first data set contains nine very small graphs (having 25–35 vertices) whose
optimum is known. GRASP found optimal solutions for all these graphs within very
few GRASP iterations. The second data set contains 40 larger graphs (from 50 to
1,000 vertices) constructed by the authors. More details about these experiments will
be given in Sect. 5.6.
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3 A local search approach for the FVSP

In this section, we describe the local search approach we propose for the FVSP. We first
define the search space (the set of configurations) and the evaluation function. Then,
we present the move mechanism—equivalent to a neighborhood function. Finally, we
propose a candidate list—equivalent to a restricted neighborhood.

In the following sections, we consider a directed graph G = (V, E), with a set V
of vertices and a set E ⊆ V × V of arcs. Given a subset V ′ ⊆ V of the vertex set, we
recall that the subgraph of G induced by V ′, denoted by G(V ′), is the graph whose
vertex set is V ′ and whose arcs are the arcs in E having their two endpoints in V ′:
G(V ′) = (V ′, E ∩ (V ′ × V ′)).

3.1 Solution representation

A directed graph with no directed cycles is named a directed acyclic graph (DAG).
Every DAG has a topological ordering, i.e. an ordering of its vertices such that the
starting-point of every arc occurs earlier in the ordering than the endpoint of the arc.
Conversely, the existence of a topological ordering in a graph proves that this graph
is acyclic. Note that the problem (named topological sorting) of finding a topological
ordering of a given graph can be solved in O(m + n).

Given a set V ′ ⊆ V of vertices, we can observe that the induced subgraph G(V ′) is
acyclic if, and only if, V − V ′ is a feedback set. Therefore, the FVSP is equivalent to
finding a set V ′ of maximum cardinality such that G(V ′) is acyclic. In the local search
approach we propose, a configuration is equivalent to an acyclic induced subgraph.
However, this induced subgraph will not be represented by a mere set of vertices but
rather by one of its topological orderings.

3.2 Search space and evaluation function

In the proposed local search approach, a configuration is any (ordered) sequence of
vertices such that, if the two endpoints of an arc belong to the sequence, the starting-
point appears earlier than the endpoint. In a sequence S, we denote by |S| the number
of elements and by S[i] the i-th element, for every i = 1 . . . p where p = |S|. The
sequence S = (S[1], S[2] . . . S[p]) is a (legal) configuration if:

1. S[1], S[2] . . . S[p] belong to V and are all different;
2. ∀i, j, (1 ≤ i < j ≤ p) ⇒ (S[ j], S[i]) /∈ E .

Condition 1 indicates that S is a valid sequence. Condition 2 expresses the prece-
dence constraint between the vertices present in the sequence. In the following, we
will denote by Dom(S) = {S[1], S[2] . . . S[p]} the set of the vertices that appear in
the sequence. In addition, a vertex in V will be said numbered or unnumbered whether
it belongs to Dom(S) or not.

We can notice that the following fundamental property holds: If S is a configuration,
then G(Dom(S)) is acyclic (and V − Dom(S) is a feedback set). Therefore, every
configuration corresponds actually to a feedback set.
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Fig. 1 Illustration of a configuration

The evaluation function f (to be minimized) is defined as follows. For any con-
figuration S, f (S) is the cardinality of the feedback set V − Dom(S): f (S) =
|V − Dom(S)|.

These definitions are illustrated in Fig. 1. A directed graph G(V, E) is displayed
on the left (Fig. 1a) and a configuration S = (v3, v2, v4, v5) on the right (Fig. 1b).
Dom(S) equals {v2, v3, v4, v5}. The (acyclic) graph G(Dom(S)) is represented in
plain lines. The cost of configuration S is f (S) = |V − Dom(S)| = |{v1}| = 1.

3.3 Move mechanism

In the following, we consider a reference configuration S. A move consists in
inserting a new vertex at some particular position into the sequence and, at the same
time, in removing the vertices that would now violate the precedence constraint. More
formally, given an unnumbered vertex v ∈ V − Dom(S) and an integer i ∈ {1 . . . |S|+
1}, move <v, i> consists in inserting v just before the element S[i], and in removing
from S the elements of CV−(v, i) ∪ CV+(v, i), where:

– CV−(v, i) = {S[ j] ∈ S : j ≥ i and (S[ j], v) ∈ E}
– CV+(v, i) = {S[ j] ∈ S : j < i and (v, S[ j]) ∈ E}

We can notice that the so-obtained sequence is still a (legal) configuration. This
configuration will be denoted by S⊕ <v, i>. According to our move definition, each
unnumbered vertex can be inserted in |S|+1 possible positions. Therefore, the number
of moves applicable to a configuration (i.e., the size of the neighborhood) is O(n2).
Note that the proposed move mechanism has some resemblance with the i-swap moves
proposed for graph k-coloring in Morgenstern (1996).

The definition of a move is illustrated in Fig. 2, where move <v5, 3> is applied
to configuration S = (v1, v2, v4). Configuration S is represented in Fig. 2a, where
each numbered vertex S[i] has a label equal to i . In 2b, vertex v is assigned a label
equal to 3 − ε. In 2c, the labels of conflicting vertices (CV−(v5, 3) = {v4} and
CV+(v5, 3) = {v1}) are removed. Finally, the labeled vertices are renumbered in 2d.
Thus, S ⊕ <v5, 3> = (v2, v5).
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Fig. 2 Applying move <v5, 3> to configuration S = (v1, v2, v4)

Fig. 3 A vertex v with its
in-coming and out-going
neighbors

In addition, we will denote by δ(v, i) = f (S⊕ <v, i>)− f (S) the performance of
move <v, i>, i.e. its impact on the evaluation function. As a single vertex is introduced
into the sequence (namely vertex v) and the vertices in CV−(v, i) and CV+(v, i) are
removed, we have that

δ(v, i) = −1 + |CV+(v, i)| + |CV−(v, i)|.

The calculation of the performance of a move is illustrated in Fig. 3. This figure shows
a vertex v displayed along with its neighbors. Unnumbered vertices (v and v3) are
represented by doubled circles. Numbered vertices are represented with their index.
Let us consider move m = <v, 8>. Conflicting vertices are those in CV−(m) = {v4}
and CV+(m) = {v6, v8}. The performance of move m is δ(m) = −1 + |CV−(m)| +
|CV+(m)| = −1 + 1 + 2 = 2.
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3.4 Candidate list strategy

A common strategy consists in defining a reduced set of moves (named a candidate
list) that contains a subset of moves of high quality. The candidate list is intended to
be exploited in a local search heuristic instead of the original set of moves in order to
improve the efficiency of the search. In the following, we first describe the candidate
list strategy we propose for the FVSP before discussing its potential merits.

According to our candidate list strategy, a vertex v can be inserted in the sequence
in only two different positions : just after its numbered in-coming neighbors [in a
position named i−(v)], or just before its numbered out-going neighbors [in a position
named i+(v)]. Formally, these two positions are defined as follows:

– Let I−(v) = {i : S[i] ∈ N−(v)} and I+(v) = {i : S[i] ∈ N+(v)}.
– i−(v) = max(I−(v)) + 1 if I−(v) �= φ; otherwise, i−(v) = 1, and
– i+(v) = min(I+(v)) if I+(v) �= φ; otherwise, i+(v) = |S| + 1.

where N−(v) and N+(v) denote the sets of the in-coming and out-going neighbors of
vertex v, respectively.

For illustrating the calculation of i−(v) and i+(v), we consider again Fig. 3. I−(v) =
{2, 4, 9} and I + (v) = {6, 7, 11, 12} are the indexes of (numbered) in-coming and
out-going neighbors of v, respectively. We have i−(v) = max(I−(v)) + 1 = 10 and
i+(v) = min(I+(v)) = 6.

Let us now give comments about the candidate list. We first notice that the size
of the candidate list is much smaller than the size of the whole set of moves: O(n)

versus O(n2). In addition, we have seen just above that applying move <v, i+(v)>

means that vertex v is inserted into the sequence just before its out-going neighbors.
As v is inserted before the out-going neighbors, this move will create no conflicts
with these neighbors. Moreover, as v is inserted just before the out-going neighbors, it
will create at the same time as few conflicts as possible with the in-coming neighbors.
The same can be said, mutatis mutandis, about move <v, i−(v)>. Therefore, the two
moves <v, i+(v)> and <v, i−(v)> have been designed carefully in order to generate
a limited number of conflicts. Two properties of the candidate list will be presented in
the following section—see properties 2 and 3 in Sect. 3.5.

3.5 Properties

In this section, we present three important properties related to the whole set of moves
and to the candidate list.

Property 1 If a configuration S is a local optimum (with respect to the whole set of
moves), this does not imply that the feedback set V-Dom(S) is minimal

This point is illustrated in Fig. 4. The figure displays a graph along with a con-
figuration S = (v3, v1). This configuration is a local optimum because none of the

Fig. 4 A local optimum may
not correspond to a minimal
feedback set
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Fig. 5 The candidate list may
not contain the best move
applied to a vertex

three moves applicable to S is strictly improving—as numbering v2 will necessarily
unassign at least one other vertex. However {v2} is not a minimal feedback set: as the
graph is acyclic, we have that the empty set is a feedback set strictly included in {v2}.

Property 2 Given an unnumbered vertex v, the candidate list may not contain the
best move applicable to v

This property is illustrated in Fig. 5. In this example, δ(v, i−(v)) = δ(v, 13) = 2,
δ(v, i+(v)) = δ(v, 2) = 2, while δ(v, 7) = −1 + |{v2}| + |{v6}| = 1. Thus, move
<v, 7> is strictly better than both <v, i−(v)> and <v, i+(v)>.

Property 3 A local optimum for the candidate list can not be improved by applying
a move present in the whole set of moves: both sets of moves define the same local
optima

If there exists an improving move <v, i> in the whole neighborhood (δ(v, i) =
−1), we have that max I−(v) < min I+(v). Thus δ(v, i−(v)) = δ(v, i+(v)) = −1 are
also improving moves.

4 A simulated annealing algorithm for the FVSP

Building on the local search approach described in the precedent sections, we have
adapted the simulated annealing metaheuristic (Cerny 1985; Kirkpatrick et al. 1983)
to the FVSP. Our Simulated Annealing algorithm for the Feedback Vertex Set Problem
will be denoted by SA-FVSP in the following.

4.1 High-level description of the SA-FVSP algorithm

The pseudo-code of the algorithm is as follows:

Algorithm SA-FVSP()

Input a directed graph G
Parameters T0, α, maxMv, maxFail
1. Set T := T0; nbFail := 0; S := (); S∗ := ();
2. Repeat
3. Set nbMvt := 0; failure := true;
4. Repeat
5. Choose a move <v, b> at random in the candidate list;
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6. Evaluate � := δ(v, b);
7. If � ≤ 0 or exp(−�/T ) ≥ r and() then
8. Apply move <v, b> to configuration S;
9. Set nbMvt := nbMvt + 1
10. If f (S) < f (S∗) then Set S∗ := S; failure := false
11. Until nbMvt = maxMvt;
12. If failure = true then
13. Set nbFail := nbFail + 1
14. else
15. Set nbFail := 0
16. Set T := T × α

17. Until nbFail = maxFail
18. Return S∗

The SA-FVSP algorithm is a classical simulated annealing with a geometric cooling
schedule. The initial temperature is fixed by a parameter (T0). The initial configuration
is an empty list of vertices. The pseudo-code contains two loops. An inner loop (lines
5–10) corresponds to a trial performed by the simulated annealing algorithm: a move
is chosen randomly in the candidate list (line 5); then, the criterion of Metropolis
determines if the move is accepted (line 7); if it is the case, the move is applied to the
current configuration (lines 8–10). An outer loop (lines 3–16) corresponds to a stage
of the algorithm. During a stage, the algorithm performs a series of inner loops (trials)
until maxMvt ”actual” moves have been performed; then the temperature is decreased
(line 16). This process is repeated until maxFail stages have been performed without
improvement of the score of the best configuration. Finally, the best configuration gen-
erated during the search is returned by the algorithm. We can notice that the algorithm
is governed by the four following parameters:

– T0 is the initial temperature;
– maxMvt is the number of moves performed during a stage;
– α is the factor used to decrease the temperature;
– maxFail is the number of stages performed without any improvement of the score

of the best configuration.

4.2 Sketch of the implementation

In this section, we present and discuss complexity issues about the algorithm. We
first sketch the implementation and then evaluate the complexity of a procedure that
performs a local search iteration by exploring the whole candidate list and by evaluating
each move.

For each vertex v, the algorithm stores two integers that contain the values of
δ(v, i+(v)) and δ(v, i−(v)). It also stores a boolean ok[v], a flag whose role is to
indicate that the current values of δ(v, i+(v)) and δ(v, i−(v)) are valid. The flag of each
vertex is set to false at the beginning of the search. A local search iteration is performed
in two consecutive steps. During step 1, all vertices are scanned, the performance of

123



806 P. Galinier et al.

each move is determined, and the best move m = <vm, im> is chosen. For each
numbered vertex v such that ok[v] = f alse, a procedure named U pdateV ertex(v)

is called. This procedure scans a first time N+(v) and N−(v) in order to compute i+(v)

and i−(v), and then a second time in order to compute δ(v, i+(v)) and δ(v, i−(v));
then ok[v] is set to true. Therefore, the complexity of the U pdateV ertex() procedure
is O(dmax ), where dmax denotes the maximum degree of a vertex in the graph.

During step 2, move <vm, im> is applied and the new configuration is built. Let us
denote by C the set of vertices removed from the sequence. At the end of step 2, for
every vertex x in C ∪ {vm}, and for every neighbor y of x in the graph, ok[y] is set to
f alse.

We can notice that the average number of vertices present in C per iteration (since
the beginning of the search) is smaller or equal to 1—because the initial configuration is
empty and exactly one vertex is inserted into the sequence on each iteration. Therefore,
O(dmax ) vertices in average have their flags set to f alse during step 2. As procedure
U pdateV ertex(.) is O(dmax ) and as it is called O(dmax ) times during step 1, the
complexity of step 1 is O(n + d2

max ). It is also the complexity of a whole local search
iteration.

In the simulated annealing algorithm, as mentioned above in Sect. 4.1, a move
is performed after performing a series of trials. A trial consists in generating a move
<v, b>, evaluating the move and applying the metropolis criterion. Generating a move
consists in choosing at random an unnumbered vertex v and then b =“+” or “−” with
equal probability. In order to evaluate <v, b> we simply read the stored value if
ok[v] = true; otherwise, we first call procedure U pdateV ertex(v). Note that, when
using the simulated annealing algorithm, performing an ”actual” move necessitates
an unbounded number of trials, and has therefore an unbounded complexity.

5 Computational results

In this section, we will present experiments conducted in order to evaluate the perfor-
mance of our SA-FVSP algorithm (along with two variants of the algorithm) and to
compare the obtained results to those of the GRASP algorithm (Pardalos et al. 1999).

The benchmark graphs used in our experiments are the graphs generated by Pardalos
et al. (1999). Given the number n of vertices and m of arcs, a graph is constructed
by choosing randomly m pairs of vertices. There are four subsets of graphs whose
order equal 50, 100, 500 and 1,000 vertices, with 10 graphs in each subset. We have
downloaded these graphs from http://www.research.att.com/~mgcr/.

The computer used in all our experiments is an Intel(R) Core(TM)2 CPU T8300
2.4 GHz with 2 GB of RAM.

5.1 Sketch of the experiments

In the following of this section, the SA-FVSP algorithm will be simply denoted by SA.
This algorithm is the simulated annealing presented above. It uses the candidate list
and the implementation described in Sect. 3.4. In our experiments, the SA algorithm
will be compared to three other algorithms:
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– the SA algorithm applied after reducing the input graph (denoted by Red+SA);
– the variant of the SA algorithm that uses the whole neighborhood (denoted by

SA-W );
– the GRASP algorithm.

The Red+SA performs two successive stages. During the first stage, a reduction
procedure is applied to the input graph in order to try to decrease the size of the
graph. Then, the simulated annealing algorithm is applied to the reduced graph. We
can assume that decreasing the size of the graph will render the problem easier and
make it possible for the simulated annealing algorithm to reach better results. Our
experiments with Red+SA (reported below in Sect. 5.4) will allow us to verify whether
it is the case, and to measure to what extent.

The SA-W algorithm is similar to the SA algorithm, except that it uses the whole
neighborhood instead of the candidate list. Note that the implementation described in
Sect. 4.2 was not applicable to SA-W. Therefore, we have developed a specific imple-
mentation for SA-W. As the candidate list is a subset of the whole neighborhood, using
it is likely to accelerate the algorithm, i.e. to render each local search iteration faster.
On the other hand, as some good-performing moves are absent from the candidate list
(see Sect. 3.4), using the candidate list may hamper the efficiency of the algorithm.
Our experiments with SA-W (reported below in Sect. 5.5) are intended to shed light
on that point.

Finally, we will compare the results of our SA algorithm to those of the GRASP
algorithm by Pardalos et al. (1999). Experiments performed with this algorithm are
reported in Pardalos et al. (1999). However, in these experiments, the GRASP algorithm
was run only once and for only 100 iterations. In addition, it is difficult to have a clear
idea about the relative speed between their computer and ours. Fortunately, the authors
provide the source code of their algorithm making it possible to perform extended
experiments on our computer. These experiments (reported below in Sects. 5.6 and
5.7) will allow us to realize a fair and extensive comparison between SA and GRASP.

5.2 Setting the parameters

The values of the parameters used by the four algorithms are given in Table 1. In
the experiments performed with GRASP, we use the same parameters as the authors
(R = 0.8, maxGrIter=100). With these parameters, performing on our computer one
run with the GRASP algorithm takes between less than one second and up to about
800 seconds, depending on the graph.

For the SA algorithm, we have fixed the values of T0 and maxFail after a limited
number of preliminary experiments. The value of parameter α was chosen arbitrarily
(a little bit smaller than 1); then we have fixed the value of maxMvt so as to obtain
cpu times that are roughly comparable to those of GRASP. Note that multiplying the
value of maxMvt by some coefficient p > 1 has the effect to roughly multiply cpu
times by p, while improving more or less the results, depending on p. With the chosen
parameter setting, the computing times (per run) of our SA algorithm range from less
than one second to almost 30 seconds, depending on the graph, and they are generally
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Table 1 Parameter settings
used during the experiments

Algorithm Parameter Value

SA T0 0.6 Initial temperature

Red+SA maxMvt 5 × n Number of moves
performed
during each
stage

SA-W α 0.99 Factor used to
decrease the
temperature

maxFail 50 Number of stages
without
improvement

GRASP R 0.8 Randomization
parameter

maxGrIter 100 Number of iterations

equal to or lower than those of GRASP. Therefore, comparing one run of SA to one
run of GRASP should never disadvantage GRASP—all the contrary.

In our experiments, we have performed with the four algorithms a series of 30 runs
on each of the 40 benchmark graphs. In addition, we have conducted extended tests
with SA and GRASP while using much larger computing times. In these extended
experiments, SA was run 1,000 times (versus 30 times in the regular experiment) and
GRASP was run once for as much as 20,000 iterations (versus a total of 30 × 100 =
3,000 iterations during the regular experiment).

5.3 Results obtained by the SA algorithm

Table 2 displays the results obtained during the experiments by the SA algorithm. Each
line in Table 2 corresponds to a graph identified by its number n of vertices and its
number m of arcs (in column 1 and 2). Columns 3–6 display statistics (minimum,
average, maximum and standard deviation) about the size of the feedback set returned
by SA, over the 30 runs. Columns 7 and 8 give the total time and the total number
of iterations per run, averaged over the 30 runs—the total time is the time measured
when the algorithm stops, not just the time used to reach the best solution. Column
9 (labeled ”Best SA”) gives the size of the smallest feedback set found during the
extended experiment of 1,000 runs. The last column (labeled ”Diff”) indicates the
difference between the best result found during the 30 runs and the best result found
during the extended test.

From the table, we can observe that computing times of SA range between 0.03 and
0.07 s for n = 50, 0.08 and 0.34 s for n = 100, 1.8 and 5.2 s for n = 500, and 11 and
25.5 s for n = 1,000.

Let us observe the value of column 10 (”Diff”) along with the one of the standard
deviation of f . For small graphs, we notice that these two values are low. This may
indicate that the algorithm finds on each run a solution equal or close to the optimum—
although we can not be sure of the value of the optimum. The opposite is true for
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Table 2 Results obtained by SA on the benchmark graphs

Graph SA BestSA Diff

f cpuT iterT f f

n m min avg max dev avg avg min min

50 100 3 3 3 0 0.03 12,875 3 0

50 150 9 9 9 0 0.03 13,600 9 0

50 200 13 13 13 0 0.03 13,817 13 0

50 250 17 17 17 0 0.03 14,125 17 0

50 300 19 19 19 0 0.04 13,658 19 0

50 500 28 28 28 0 0.05 18,200 28 0

50 600 31 31.4 32 0.5 0.07 23, 633 31 0

50 700 33 33 33 0 0.05 17,533 33 0

50 800 34 34.1 35 0.3 0.07 23, 558 34 0

50 900 36 36 36 0 0.04 17,800 36 0

100 200 9 9.1 10 0.3 0.08 33,083 9 0

100 300 17 17 17 0 0.1 35,933 17 0

100 400 23 23 24 0.2 0.11 38,667 23 0

100 500 32 32.3 33 0.4 0.16 47,400 32 0

100 600 37 37 37 0 0.16 47,000 36 1

100 1,000 53 53.2 54 0.4 0.28 53,883 53 0

100 1,100 54 54.8 55 0.4 0.23 43,083 54 0

100 1,200 57 57 58 0.2 0.29 52,233 57 0

100 1,300 60 6 61 0.2 0.31 52,817 60 0

100 1,400 61 61 61 0 0.34 48,833 61 0

500 1,000 31 32.1 33 0.7 1.79 236,500 31 0

500 1,500 64 65.1 66 0.6 2.18 276,667 64 0

500 2,000 102 104 106 0.9 2.61 324,167 102 0

500 2,500 133 135.5 138 1.1 2.75 327,333 133 0

500 3,000 164 165.4 168 1 2.76 312,583 162 2

500 5,000 237 239.2 241 1.2 3.78 298,917 237 0

500 5,500 252 253.8 256 1.3 3.96 305,333 251 1

500 6,000 265 267.6 270 1.3 4.64 324,750 264 1

500 6,500 277 278.9 283 1.2 4.79 319,833 276 1

500 7,000 287 288.9 292 1.2 5.2 324,667 286 1

1,000 3,000 132 134.3 137 1.3 11.5 715,167 129 3

1,000 3,500 166 168.8 172 1.3 11.3 718,833 164 2

1,000 4,000 196 198.9 202 1.6 11.49 727,500 195 1

1,000 4,500 229 234.2 239 2.6 10.98 698,000 228 1

1,000 5,000 263 265.6 269 1.3 11.4 718,000 259 4

1,000 10,000 472 475.4 479 1.5 13.45 730,167 469 3
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Table 2 continued

Graph SA BestSA Diff

f cpuT iterT f f

n m min avg max dev avg avg min min

1,000 15,000 582 584.9 588 1.8 16.73 694,500 579 3

1,000 20, 000 652 656.1 660 1.6 20.29 686, 833 651 1

1,000 25, 000 701 704.5 707 1.4 24.76 671, 667 699 2

1,000 30, 000 741 744 747 1.7 25.47 637, 500 739 2

the larger graphs. In particular, for graphs of 1,000 vertices, the value of column 10
(“Diff”) ranges between 1 and 4. This confirms that the algorithm was never able
to reach the optimal value and sometimes found solutions far from the optimum.
However, this is not so surprising as the computing times are low, considering the size
of the graph. Better and more robust results could be obtained by allotting more time
to the algorithm, simply by increasing the value of parameter maxMvt—or even by
performing restarts and returning the best solution.

When considering the number of moves, it must not be forgotten that the values
displayed in the table correspond to the total number of moves carried out during one
run. However, after finding the best solution, the algorithm still performed at least
maxFail × maxMvt = 50 × 5 × n = 250 × n moves. For example, if we consider
the smallest graph, it took in average at most 12,875 − 250 × 50 = 375 moves (more
precisely, between 125 and 375 moves) to reach the best solution (i.e. a feedback set
of size 3). For the same reason, the computing time used to reach the best solution
may be much smaller than the total cpu time indicated in the table, in particular for
small graphs.

5.4 Tests performed with reduced graphs

Table 3 displays the results obtained by the Red+SA algorithm. Recall that Red+SA
simply consists in applying a reduction procedure to the graph before using the sim-
ulated annealing algorithm. This reduction procedure performs recursively the five
reduction operations proposed in Levy and Low (1988). It stops when no more reduc-
tion operation is applicable—note that the output graph does not depend on the order
in which the operations are performed. This procedure is the same as the one used in
GRASP—see Sect. 2.

Table 3 gives the results for only 23 graphs. For the 17 remaining graphs, the
reduction procedure had no effect—the graph returned by the reduction procedure
was the same as the input graph.

Columns 3 (labeled n′) and 4 (m′) give the number of vertices and arcs of the
reduced graph, respectively. The other columns have the same meaning as in Table
2. The two last columns (”Diff”) correspond to the difference between the results
obtained by Red+SA and SA: therefore, a negative value indicates that the result of
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Table 3 Results obtained by Red+SA on the benchmark graphs

Graph Reduction Red+SA SA Diff
f cpuT iterT f f

n m n′ m′ min avg max dev avg avg min avg min avg

50 100 11 36 3 3 3 0 0.03 12, 750 3 3 0 0

50 150 31 117 9 9 9 0 0.03 13, 075 9 9 0 0

50 200 41 180 13 13 13 0 0.03 13, 183 13 13 0 0

50 250 45 243 17 17 17 0 0.04 14, 600 17 17 0 0

50 300 47 297 19 19 19 0 0.04 13, 883 19 19 0 0

100 200 26 79 9 9 9 0 0.06 25, 900 9 9.1 0 −0.1

100 300 66 254 17 17 17 0 0.08 28, 900 17 17 0 0

100 400 73 320 23 23 23 0 0.1 36, 183 23 23 0 0

100 500 90 475 32 32.2 33 0.4 0.14 43, 933 32 32.3 0 −0.1

100 600 95 591 37 37.1 38 0.3 0.15 46, 066 37 37 0 0.1

100 1,000 99 998 53 53.2 54 0.4 0.27 53, 483 53 53.2 0 −0.1

500 1,000 122 407 31 31 31 0 1.78 228, 083 31 32.1 0 −1.1

500 1,500 309 1,224 63 64.3 65 0.5 2.35 288, 416 64 65.1 −1 −0.8

500 2,000 404 1,848 102 103.2 104 0.6 2.53 304, 750 102 104 0 −0.8

500 2,500 457 2,442 133 135.3 138 1.2 2.62 312, 000 133 135.5 0 −0.2

500 3,000 483 2,965 163 165.4 167 1.1 2.94 329, 166 164 165.4 −1 0

500 5,000 499 4,998 237 239.1 242 1.2 3.95 306, 583 237 239.2 0 −0.1

500 5,500 499 5,499 252 253.7 256 1.1 4.04 307, 416 252 253.8 0 −0.1

1,000 3,000 613 2,369 128 131.2 135 1.6 11.53 691, 666 132 134.3 −4 −3.1

1,000 3,500 723 3,026 163 166.5 169 1.5 12.34 753, 500 166 168.8 −3 −2.3

1,000 4,000 793 3,589 194 197.3 201 1.3 12.93 715, 500 196 198.9 −2 −1.6

1,000 4,500 869 4,231 230 233.5 237 2.3 12.21 748, 500 229 234.2 1 −0.7

1,000 5,000 919 4,839 263 265.7 269 1.3 11.7 731, 000 263 265.6 0 0.1

Red+SA is better than the one obtained by SA (thus, the reduction had a favourable
impact in this case).

Let us first observe in columns 3–4 the outcome of the reduction. For a given value
of n, the graphs that are actually reduced are those that have the smallest number of
arcs. Moreover, the smallest the number of arcs, the most important the decrease in
the number of vertices and arcs. We also notice that the average degree of a vertex
tends to increase as a result of the reduction—this is not surprising as the reduction
tends to remove the sparsest parts of the input graph. Finally, note that the computing
time of the reduction is negligible.

Let us now analyse the impact of the reduction on the quality of the results. We notice
that reduction makes it possible to improve significantly the results of some graphs
with the minimum and the average reduced by up to 4 and 3.1 vertices, respectively.
Unsurprisingly the improvement was the most important for the largest and sparsest
graphs—those that underwent the most drastic shrinking. For three graphs of 1,000
vertices (those having 3,000, 3,500 and 4,000 arcs), the best solution found by Red −
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S A within 30 runs (128, 163, and 194, respectively) is even better than the best solution
found by S A within 1,000 runs (129, 164, and 195; see Table 2). Finally, we notice
that Red + S A is sometimes a little bit slower than S A. However, it is not so surprising
if we consider that the reduction increased the average degree of a vertex.

In summary, when applied to a sparse graph, first reducing the input graph before
applying local search may have a very positive impact on the quality of the solutions
found.

5.5 Tests performed with the whole neighborhood

Table 4 displays the results obtained by the SA-W algorithm. The columns of the
table have the same meaning as in the precedent tables. Positive values in the two last
columns (labeled “Diff”) indicate that the result of SA is better than the one obtained
by SA-W (indicating that the candidate list has a favourable impact).

We can observe that the overall results of SA-W are not as good as those obtained
by SA, with the minimum and the average increased by up to 19 and 20, respectively.
The deterioration affects mainly the graphs having 500 and 1,000 vertices—the worst
deterioration arising for the graphs of 1,000 vertices, except the densest ones.

In our experiments, the cpu times of SA-W (not reported in the table) were between
4 and 8 times larger than those of SA. Whatever the implementation of the SA-W
algorithm, it is clear that it will be possible to make SA as fast as SA-W, and probably
faster. However, as SA outperforms SA-W, we did not put too much effort in trying to
optimize the implementation of SA-W. This is why we do not report the computing
times of SA-W in Table 4.

As shown in Sect. 3.4, we are able to compute very efficiently the performance
of a move chosen in the candidate list. It was therefore expected that computing an
iteration was faster when using the candidate list than with the whole neighborhood.
However, it is surprising to observe that restricting the set of moves to the candidate
list does not affect the efficiency of the search—with respect to the decrease of the cost
function for a same number of iterations. Far from that, the efficiency of the search is
consistently and significantly improved. In other words, using the candidate list seems
to better guide the search.

In summary, our experiments show that the simulated annealing algorithm is both
faster and more efficient when using the candidate list rather than the whole neigh-
borhood.

5.6 Replicating the results of GRASP

The source code of GRASP is provided by the authors of Pardalos et al. (1999) and can
be downloaded from http://www.research.att.com/~mgcr/. Information about how to
use it is provided in Festa et al. (2001). We have compiled this source code (written in
Fortran). Before comparing in the next section the results obtained with this program
to those of our S A algorithm, we first compare them to those reported in the original
paper (Pardalos et al. 1999).
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Table 4 Results obtained by SA-W on the benchmark graphs

Graph SA-W SA Diff
f f f

n m min avg max dev min avg min avg

50 100 3 3 3 0 3 3 0 0

50 150 9 9 9 0 9 9 0 0

50 200 13 13.1 14 0.3 13 13 0 0.1

50 250 17 17 17 0 17 17 0 0

50 300 19 19 19 0 19 19 0 0

50 500 28 28 28 0 28 28 0 0

50 600 31 31.1 32 0.3 31 31.4 0 −0.3

50 700 33 33 33 0 33 33 0 0

50 800 34 34 34 0 34 34.1 0 −0.1

50 900 36 36 36 0 36 36 0 0

100 200 9 10.1 12 0.5 9 9.1 0 1

100 300 17 18.5 20 0.8 17 17 0 1.5

100 400 23 23.4 24 0.5 23 23 0 0.3

100 500 32 32.7 33 0.5 32 32.3 0 0.4

100 600 37 37.9 39 0.6 37 37 0 0.9

100 1,000 53 53.7 55 0.6 53 53.2 0 0.5

100 1,100 55 55 55 0 54 54.8 1 0.2

100 1,200 57 57.7 58 0.5 57 57 0 0.7

100 1,300 60 60 60 0 60 60 0 0

100 1,400 61 61 61 0 61 61 0 0

500 1,000 37 39.7 42 1.2 31 32.1 6 7.6

500 1,500 70 75.4 79 2.1 64 65.1 6 10.3

500 2,000 109 112.7 115 1.4 102 104 7 8.7

500 2,500 141 144.3 147 1.3 133 135.5 8 8.7

500 3,000 168 170.5 174 1.6 164 165.4 4 5.1

500 5,000 241 244.4 247 1.5 237 239.2 4 5.2

500 5,500 259 260.4 263 1.1 252 253.8 7 6.6

500 6,000 269 272.5 275 1.6 265 267.6 4 4.9

500 6,500 281 284.4 287 2 277 278.9 4 5.5

500 7,000 291 294.2 297 1.7 287 288.9 4 5.2

1,000 3,000 147 153.1 157 2.7 132 134.3 15 18.8

1,000 3,500 180 185 190 2.3 166 168.8 14 16.1

1,000 4,000 214 218 222 1.9 196 198.9 18 19.1

1,000 4,500 248 254.3 260 3 229 234.2 19 20

1,000 5,000 276 285.1 290 2.8 263 265.6 13 19.6

1,000 10,000 489 491.9 495 1.7 472 475.4 17 16.5

1,000 15,000 598 600.4 604 1.7 582 584.9 16 15.5

1,000 20,000 665 668 671 1.7 652 656.1 13 12
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Table 4 continued

Graph SA-W SA Diff
f f f

n m min avg max dev min avg min avg

1,000 25,000 710 714.5 718 2 701 704.5 9 10

1,000 30,000 748 752.3 755 1.8 741 744 7 8.3

Table 5 reproduces in columns 3 and 4 (labeled “Pardalos et al. 1999”) the results
given in Pardalos et al. (1999). Recall that the GRASP algorithm was run only once
by the authors. Columns 5–9 (labeled “GRASP”) display statistics about the results
obtained by GRASP on our computer, over 30 runs. The size of the smallest feedback
sets returned by GRASP during the extended experiment are presented in column 10
(labeled “BG”, where “BG” stands for “Best GRASP”).

We notice that, for each graph, the result reached by the authors during their single
run is close to the average value obtained in our experiments; in addition, for every
graph, this result falls between the minimum and the maximum value obtained on our
computer. This confirms that the source code provided by the authors is the same or
is equivalent to the one they used in their experiments.

When observing computing times, we notice unsurprisingly that those measured
on our computer are shorter than those reported by the authors. Depending on the
graph, the speeding rate generally ranges between 8 and 20. It seems to be very low,
considering the speed up of computers since that time. However, this may not be so
surprising when we consider that the computer used in Pardalos et al. (1999) (a Silicon
Graphics Challenge computer with twenty 196 MHz MIPS R10000 processors and
6.1 Gb of main memory) is a “supercomputer” that was one of the fastest computers of
that time (The New York Times 1993; http://en.wikipedia.org/wiki/SGI_Challenge).

5.7 Comparing the results of SA to those of GRASP

The two last columns (“Diff”) in Table 5 correspond to the difference between the
results obtained by GRASP and SA: therefore, a positive value indicates that the result
of SA is better than the one obtained by GRASP.

If we compare SA and GRASP with respect to solution quality, we notice that, for
every graph, the results obtained by GRASP are never better than those of S A, whether
we consider the minimum or the average. The improvement of SA over GRASP, accord-
ing to the minimum, range between 0 and 1, 0 and 3, 1 and 26, and 10 and 55 for
graphs of 50, 100, 500 and 1,000 vertices, respectively. These results indicate there-
fore a moderate advantage for SA on the graphs with 50 vertices, but an important
advantage for the graphs of 100 vertices, and an considerable difference for the graphs
having 500 and 1,000 vertices.

Let us consider the size of the smallest feedback set found by GRASP during a run
of 20,000 iterations (column labeled “BG”). In this experiment, GRASP was allotted
200 more times than during a regular run. In spite of that, the result of GRASP is
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generally worse than the average result obtained by S A during a single regular run.
For every graph of 1,000 vertices, the record of GRASP is much worse than the average
result of S A; it is even worse than the worst result of S A obtained over the 30 runs.

In summary, while the performances of SA and GRASP are comparable on a few
very small graphs, SA outperforms GRASP by a very large margin for large graphs of
500 and 1,000 vertices.

6 Conclusion

Although the FVSP is an important NP-hard problem, local search heuristics had
never been applied to the problem, and no local search approach was known in order
to tackle it. In this paper, we have proposed a practical local search approach for the
solution of this problem.

Taking advantage of a well-known property related to acyclic graphs, we have
proposed a new representation of feedback sets: given a graph G(V, E), a feedback set
V ′ is represented by a linear ordering of the subgraph induced by V −V ′. Thanks to this
solution representation, it becomes possible to define a move mechanism (equivalent
to a neighborhood) that transforms a given feedback set into a new legal feedback set.

In addition, we have identified a reduced set of moves (i.e., a candidate list) that
contains a subset of high-quality moves. The cardinality of the candidate list is much
smaller than the one of the original set of moves (linear versus quadratic in |V |). We
have also described an efficient technique to evaluate incrementally the performance
of the moves of the candidate list.

We have implemented a simulated annealing algorithm that exploits the proposed
local search approach and tested the algorithm on standard benchmark graphs. Our
experiments show that using the candidate list instead of the whole neighborhood has
a positive impact on the results. Above all, the experiments show that our algorithm
outperforms by a large margin the best existing heuristic, namely the GRASP by
Pardalos et al. Pardalos et al. (1999). These results demonstrate the efficiency of the
proposed local search approach for the solution of the FVSP.

The local search approach proposed in this paper paves the way for new more
powerful heuristics. In particular, a promising avenue is the development of hybrid
heuristics, such as memetic algorithms. This will be the subject of our future work.
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