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Abstract
Feedback vertex set using Edge Density and REmove Redundant (FEDRER) is a novel heuristic
solver for finding a feedback vertex set in a directed graph (DFVS). The solver can be accessed
through this link1. In FEDRER, we first remove all the redundant vertices, that is, the vertices
which can never be a part of any optimal DFVS via various known reduction techniques. In the
process, we also obtain some vertices which belong to one of the optimal DFVS. Then we decompose
the reduced graph into several strongly connected components and compute the union of the DFVSs
(say D) of each of the components respectively. Finally, we remove vertices from D, such that D is
still a DFVS of G.

Keywords and phrases Divide and Conquer, Depth First Search, Edge Density and Redundancy
Removal

1 Definitions

We used the following definitions and notations in FEDRER. Let G(V, E) be a directed
graph. If (u, v) ∈ E(G), then u is a predecessor of v and v is a successor of u. An edge (u, v)
is called PIE-edge iff both (u, v) and (v, u) ∈ E(G). The neighbour of a vertex v ∈ V (G),
denoted as N(v) is defined as {u : (v, u) is a PIE-edge}. A vertex u ∈ V (G) is a PIE-vertex
if all edges incident on u are PIE-edges. The edge density of u ∈ V (G) is the product of its
in-degree and out-degree. A vertex v ∈ V (G) is a critical node if it has the maximum edge
density among all the vertices of G. A critical density sequence S is a sequence of vertices of
G arranged in the descending order of their respective edge densities. A critical node list
L ⊆ V (G) of order k is the list of first k vertices from S.

A subgraph H ⊆ G is a strongly connected component (SCC) if there exists a path between
any two vertices of H. Let H1, H2 be two SCCs of G. An edge (u, v) ∈ E(G) is called an
acyclic edge, if u ∈ V (H1) and v ∈ V (H2), that is, (u, v) is not a part of any cycle in G. We
use d-clique to denote a clique in a directed graph. A vertex v ∈ V (G) is a core vertex if v
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is a PIE-vertex and N(v) ∪ {v} forms a d-clique. A cycle C1 =< v1, v2, · · · , vn, v1 > is said
to be covered by a cycle C2 =< u1, u2, · · · , uk, u1 > if each vertex vi, i = 1, · · · , n, in C1 is
contained in C2. A cycle is minimal if it does not cover any other cycle. Given an edge (u,
v), if (u, v) is a PIE-edge, then the vertex u is called PIE-predecessor of the vertex v and the
vertex v is called PIE-successor of the vertex u. Otherwise, the vertex u is called non-PIE
predecessor of the vertex v and the vertex v is called non-PIE successor of the vertex u. An
edge (u, v) is a dominated edge if one of the following condition holds:

Set of non-PIE predecessor of u is a subset of all predecessor of v.
Set of non-PIE successor of v is a subset of all successors of u.

2 FEDRER

We use greedy, divide and conquer strategies in FEDRER. Our approach is divided into
three major phases:

Size Reduction
Divide and Conquer
Remove Redundant

2.1 Size Reduction
We use a collection of data reduction rules from [3, 4] to reduce the size of the input graph.
The reductions used in FEDRER is implemented in three phases, namely: Levy and Low,
PIE reduction and core reduction. If |E(G)| ≤ 106 we additionally use dome reduction
defined in [4]. To be self-contained, we now give a brief description of the aforementioned
reduction rules. Refer to [3, 4] for a more thorough discussion on these reductions, including
implementation details. The first five most straight forward reductions are described by Levy
and Low in [3]:

LOOP(v) If v has a loop, it must be a member of any DFVS of G. Thus, G is
transformed into G − v as for any DFVS (say) D′ of G − v the set D′ ∪ v is a DFVS of G.

IN0(v) If v is loop-free and has indegree 0, it cannot be a part of any cycle. Hence, G

is transformed into G − v since both digraphs have the same minimal DFVSs.

OUT0(v) If v is loop-free and has outdegree 0, G is transformed into G − v with the
same argumentation as in IN0(v).

IN1(v) If v is loop-free and has indegree 1, it has a unique predecessor u. Merge v

into u as a single vertex.

OUT1(v) If v is loop-free and has outdegree 1, it has a unique successor u. Merge v

into u as a single vertex.

Another reduction rule that decreases the cardinality of V is presented in [4].

CORE(v) If v is a core vertex, then N(v) is part of an optimal DFVS. Hence, G is
transformed into G − N(v) as any optimal DFVS D′ of G − N(v) yields the optimal
DFVS D′ ∪ N(v) of G.
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There are reductions presented in [4] which cause a decrease of E(G) only.

PIE reduction For the sake of clarity, the set of PIE-edges in G are called PIE.
According to this reduction rule, the acyclic edges in the G − PIE can be removed safely.

DOME reduction This rule states that all cycles that contain a dominated edge are
not minimal and thus, the dominated edges can be safely removed from G.

2.2 Divide and Conquer
After applying the reduction rules described in Section 2.1, we then apply the divide and
conquer strategy represented in the following steps:

step 1: DFV S = {}
step 2: Decompose the reduced graph into a dis-joint union of strongly connected compon-
ents using Kosaraju’s algorithm [1]. Let Sl be the list of SCCs after the decomposition.
step 3: For each SCC in Sl:

step 4: we remove a list of critical nodes L from the SCC.
step 5: DFV S = DFV S ∪ L

step 6: Apply the reductions of Section 2.1 on each SCC of Sl.
step 7: Apply steps 2 − 7 on each SCC of Sl, obtained in Step 6, until each SCC is of
order 1.
step 8: Return DFV S

2.3 Remove Redundant
In this phase, we try to optimise the DFVS formed in Section 2.2. The optimisation is
achieved via two steps:

DFVS refinement: Since FEDRER is a heuristic solver, so sometimes the DFV S

obtained from Section 2.2 may not be a minimum DFVS. Therefore, we randomly add k

vertices (based on the size of the input graph) from V (G) − DFV S to DFV S. We then
reduce the size of the DFV S in the DFVS reduction step.
DFVS reduction: Let DFV S be the set obtained from the DFVS refinement step. We
then remove the redundant vertices from DFV S using Algorithm B of [2].

We repeatedly apply the DFVS refinement and DFVS reduction steps on DFV S until we
exhaust the ETL (end of time limit). We return the DFV S with minimum cardinality
obtained in this process.
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