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Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G ) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G ).

• Minimizing τ(G ) is NP-Hard [Karp, 1972].



Motivations

• Finding feedback vertex sets in dependency digraphs can be
used to resolve deadlock.

• Selecting flip-flops in partial scan designs. It is a technique
used in design for testing.
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Three Main Steps

Most FVS heuristics follow these steps.

1 Digraph reductions: Removing vertices and arcs without
changing the problem.

2 Vertex selection: Choose a vertex to be in a FVS.

3 Removing redundant vertices: The FVS may not be minimal.
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Strongly Connected Components

Definition
A digraph is said to be strongly connected if there is a directed
path between any two vertices.

• Every arc in a strongly connected digraph is in a cycle.

• We can use Tarjan’s Algorithm [Tarjan, 1972] to reduce a
digraph into strongly connected components (SCC).

• O(|V |+ |E |) running time
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Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].
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fvs Max Deg

Choosing a vertex based off of vertex degrees is quicker.

Algorithm 1: MaxDeg

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

S ←− ∅
LL graph reductions(G ,S)
L←− get SCC (G )
while |L| 6= 0 do

remove g from L
v ←− max(min(d+(v), d−(v))|v ∈ V (G ))
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end



Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.
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MFVSmean

Algorithm 2: MFVSmean

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

S ←− ∅
LL graph reductions(G ,S)
L←− get SCC (G )
while |L| 6= 0 do

remove g from L
v ←− MFVSmean selection(g)
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end



MFVSmean

Algorithm 3: MFVSmean selection

Data: A Digraph G = (X ,U)
Result: A vertex v
begin

P←− CreateTransitionMatrix(G )
π′ ←− ComputeStationaryDistributionVector(P)
P←− CreateTransitionMatrix(G−1)
π′′ ←− ComputeStationaryDistributionVector(P)
π ←− π′ + π′′

determine v ∈ V with πv = ‖π‖∞
return v

end



Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).

If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.



Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.



Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.



Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.



Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.



z

a1 b1

c1 d1

at bt

ct dt

Figure: For t ≥ 2 the vertex z is not in a minimum FVS, but is in nearly
every DCU and most cycles.



Disjoint Cycle Unions and the Permanent

The permanent of a matrix A is defined as

perm(A) =
∑
σ

n∏
i=1

ai ,σ(i).

The permanent counts the number of spanning disjoint cycle
unions. We can create an auxilary digraph H from G by adding
loops to the vertices of G .

perm(A(H))− 1 = |DCU(G )|
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m balance

Let H be the auxilary digraph created as before. From H we can
create a matrix called the m balance(A(H)) that gives the fraction
of DCUs that every arc of H is in.

m bal(A(H)) =
ai ,j × perm(A(H)i ,j)

perm(A(H))
. (1)

• The m balance is doubly stochastic since every vertex is
incident with every DCU.

• The loop with the smallest value in the m balance
corresponds to the vertex that is in the most DCUs.

• The m balance is very hard to calculate.
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Sinkhorn Balancing.

Algorithm 4: Sinkhorn Selection

Data: A Digraph G = (V ,U)
Result: A vertex v
begin

A←− adjacency matrix of G
A←− add ones to the diagonal of A
for i ∈ {1, ..., dlog(n)e} do

A←− normalize the rows of A
A←− normalize the columns of A

end
v is the vertex corresponding to the lowest value on the
diagonal of A
return v

end

• Soules [1991] showed that Algorithm 4 converges quickly if A
is totally supported. Reducing to strongly connected
components guarantees this.

• Beichl and Sullivan [1999] showed that the limiting matrix of
the Sinkhorn-Knopp algorithm can be used to estimate the
permanent of A.

• We observed that we only need to complete log(n) iterations
for the order to settle down.
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Sinkhorn Balancing.

Algorithm 6: Sinkhorn Selection

Data: A Digraph G = (V ,U)
Result: A vertex v
begin

A←− adjacency matrix of G
A←− add ones to the diagonal of A
for i ∈ {1, ..., dlog(n)e} do

A←− normalize the rows of A
A←− normalize the columns of A

end
v is the vertex corresponding to the lowest value on the
diagonal of A
return v

end

• Soules [1991] showed that Algorithm 4 converges quickly if A
is totally supported. Reducing to strongly connected
components guarantees this.

• Beichl and Sullivan [1999] showed that the limiting matrix of
the Sinkhorn-Knopp algorithm can be used to estimate the
permanent of A.

• We observed that we only need to complete log(n) iterations
for the order to settle down.



fvs sh del

Algorithm 7: FVS SH Del

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

H ←− G
S ←− ∅
LL graph reductions(H,S)
L←− get SCC (H)
while |L| 6= 0 do

remove g from L
v ←− Sinkhorn selection(g)
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end

O(|S |log(n)n2)



fvs sh del mod

Algorithm 8: FVS SH DEL MOD

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

H ←− G
S ←− ∅
LL graph reductions(H,S)
while |V (H)| 6= 0 do

v ←− Sinkhorn selection(H)
remove v from H
S ←− S + {v}
LL reductions(H,S)

end
S ←− remove redundant nodes(G ,S)
return S

end



Remove Redundant Vertices

1 Let S = S0 and assume S0 is in the reverse order in that the
vertices of S where selected by Algorithm 7.

2 We then recursively select vertex vi from Si−1 and check to
see if G − (Si−1 − {v}) is a DAG.

3 If it is not a DAG, then we let Si = Si−1.

4 If it is a DAG, then v is redundant and we let Si = Si−1−{v}.
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Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G ).

• If t ≤ τ(G ), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G ) and T respectively such that
cX (αi ) ≥ cX (αi+1) and β and cX (βi ) ≥ cX (βi+1)

•
t∑

i=0

cX (αi ) ≥ |X |
t′∑
i=0

cX (βi ) ≥ |X |.

•

kτ(G ) ≥
t∑

i=0

cX (αi ) ≥ |X | = ε|S |.
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• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G ) and T respectively such that
cX (αi ) ≥ cX (αi+1) and β and cX (βi ) ≥ cX (βi+1)

•
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Random digraphs

• We created Erdos-Renyi random digraphs by visiting every
ordered pair of vertices and placing an arc with probability p
between them.

• A digraph is k-regular if d+(v) = d−(v) = k for every
v ∈ V (G ).

• We chose random k-regular digraphs uniformly by first using
the methods of Kleitman-Wang to create a k-regular digraph.

• We then perform k2n arc switches to simulate a uniformly
chosen one.
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Erdos-Renyi Random Digraphs n = 1000
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k-Regular Digraphs n = 100
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k-Regular Digraphs n = 1000
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Entropy

For many small digraphs the Sinkhorn method performed better
than the m balance.

The entropy of a doubly stochastic matrix A
is

entropy(A) = −
∑
i ,j

ai ,j log(ai ,j).

Beichl and Sullivan showed the limiting matrix of the
Sinkhorn-Knopp algorithm maximizes the entropy for all
doubly-stochastic matrices with a given zero-one pattern.
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