
Matrix Scaling: A New Heuristic for the
Feedback Vertex Set Problem

James Shook1 Isabel Beichl1

1National Institute of Standards and Technology

June 10, 2014

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Feedback Vertex Sets

• G = (V ,A) are digraphs.

• If G does not have a directed cycle, then it is said to be
acyclic (DAG).

• A set F ⊆ V (G) is said to be a feedback vertex set, denoted
by FVS, if for any cycle C in G some vertex of C is in F .

• An FVS is said to be minimal if no proper subset is an FVS.

• We are interested in finding a minimum FVS.

• The order of a minimum FVS is denoted by τ(G).

• Minimizing τ(G) is NP-Hard [Karp, 1972].

Motivations

• Finding feedback vertex sets in dependency digraphs can be
used to resolve deadlock.

• Selecting flip-flops in partial scan designs. It is a technique
used in design for testing.

Motivations

• Finding feedback vertex sets in dependency digraphs can be
used to resolve deadlock.

• Selecting flip-flops in partial scan designs. It is a technique
used in design for testing.

Three Main Steps

Most FVS heuristics follow these steps.

1 Digraph reductions: Removing vertices and arcs without
changing the problem.

2 Vertex selection: Choose a vertex to be in a FVS.

3 Removing redundant vertices: The FVS may not be minimal.

Three Main Steps

Most FVS heuristics follow these steps.

1 Digraph reductions: Removing vertices and arcs without
changing the problem.

2 Vertex selection: Choose a vertex to be in a FVS.

3 Removing redundant vertices: The FVS may not be minimal.

Three Main Steps

Most FVS heuristics follow these steps.

1 Digraph reductions: Removing vertices and arcs without
changing the problem.

2 Vertex selection: Choose a vertex to be in a FVS.

3 Removing redundant vertices: The FVS may not be minimal.

Strongly Connected Components

Definition
A digraph is said to be strongly connected if there is a directed
path between any two vertices.

• Every arc in a strongly connected digraph is in a cycle.

• We can use Tarjan’s Algorithm [Tarjan, 1972] to reduce a
digraph into strongly connected components (SCC).

• O(|V |+ |E |) running time

Strongly Connected Components

Definition
A digraph is said to be strongly connected if there is a directed
path between any two vertices.

• Every arc in a strongly connected digraph is in a cycle.

• We can use Tarjan’s Algorithm [Tarjan, 1972] to reduce a
digraph into strongly connected components (SCC).

• O(|V |+ |E |) running time

Strongly Connected Components

Definition
A digraph is said to be strongly connected if there is a directed
path between any two vertices.

• Every arc in a strongly connected digraph is in a cycle.

• We can use Tarjan’s Algorithm [Tarjan, 1972] to reduce a
digraph into strongly connected components (SCC).

• O(|V |+ |E |) running time

Strongly Connected Components

Definition
A digraph is said to be strongly connected if there is a directed
path between any two vertices.

• Every arc in a strongly connected digraph is in a cycle.

• We can use Tarjan’s Algorithm [Tarjan, 1972] to reduce a
digraph into strongly connected components (SCC).

• O(|V |+ |E |) running time

Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].

Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].

Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].

Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].

Levy and Low reductions

Definition
We call the operation of removing a vertex v from a graph G and
adding the edges N−(v)× N+(v) that are not already in G an
exclusion of v from G .

• loop(v): if there exists a loop, then it is in every FVS and we
can safely remove it and add it to our FVS.

• in0 out0(v): If v has no successors or predecessors, then v is
not in a minimum FVS and we can safely remove it.

• in1 out1(v): If v has exactly one successor or one predecessor
u, then whenever v is in a FVS so is u. Thus, we can safely
exclude v from G .

• The operations can be done in any order [Levy and Low,
1988].

fvs Max Deg

Choosing a vertex based off of vertex degrees is quicker.

Algorithm 1: MaxDeg

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

S ←− ∅
LL graph reductions(G ,S)
L←− get SCC (G)
while |L| 6= 0 do

remove g from L
v ←− max(min(d+(v), d−(v))|v ∈ V (G))
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end

Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.

Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.

Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.

Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.

Mean return time

• The probability that a vertex x of a cycle C is in a minimum
FVS is at least 1

|C | .

• It is reasonable to suspect that a vertex that is in a lot of
small cycles is in a minimum FVS.

• Speckenmeyer [1990] and Lemaic and Speckenmeyer [2009]
studied a random walks on a digraph and calculated the
stationary distribution of the transition matrix.

• They selected the vertex with the smallest mean return time.

• Their method operates in about O(|F |n2.376) time.

MFVSmean

Algorithm 2: MFVSmean

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

S ←− ∅
LL graph reductions(G ,S)
L←− get SCC (G)
while |L| 6= 0 do

remove g from L
v ←− MFVSmean selection(g)
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end

MFVSmean

Algorithm 3: MFVSmean selection

Data: A Digraph G = (X ,U)
Result: A vertex v
begin

P←− CreateTransitionMatrix(G)
π′ ←− ComputeStationaryDistributionVector(P)
P←− CreateTransitionMatrix(G−1)
π′′ ←− ComputeStationaryDistributionVector(P)
π ←− π′ + π′′

determine v ∈ V with πv = ‖π‖∞
return v

end

Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).

If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.

Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.

Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.

Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.

Disjoint Cycle Unions and FVS

A set of vertex disjoint cycles is said to be a disjoint cycles union
(DCU).
If S is an FVS, then there exists an x ∈ S such that it is in at least
|DCU(G)|
|S | DCUs.

• DCUs are not a local property.

• It is reasonable to suspect that a vertex that is in many DCUs
is in a minimum FVS.

• Finding all DCUs is hard.

z

a1 b1

c1 d1

at bt

ct dt

Figure: For t ≥ 2 the vertex z is not in a minimum FVS, but is in nearly
every DCU and most cycles.

Disjoint Cycle Unions and the Permanent

The permanent of a matrix A is defined as

perm(A) =
∑
σ

n∏
i=1

ai ,σ(i).

The permanent counts the number of spanning disjoint cycle
unions. We can create an auxilary digraph H from G by adding
loops to the vertices of G .

perm(A(H))− 1 = |DCU(G)|

Disjoint Cycle Unions and the Permanent

The permanent of a matrix A is defined as

perm(A) =
∑
σ

n∏
i=1

ai ,σ(i).

The permanent counts the number of spanning disjoint cycle
unions. We can create an auxilary digraph H from G by adding
loops to the vertices of G .

perm(A(H))− 1 = |DCU(G)|

Disjoint Cycle Unions and the Permanent

The permanent of a matrix A is defined as

perm(A) =
∑
σ

n∏
i=1

ai ,σ(i).

The permanent counts the number of spanning disjoint cycle
unions. We can create an auxilary digraph H from G by adding
loops to the vertices of G .

perm(A(H))− 1 = |DCU(G)|

m balance

Let H be the auxilary digraph created as before. From H we can
create a matrix called the m balance(A(H)) that gives the fraction
of DCUs that every arc of H is in.

m bal(A(H)) =
ai ,j × perm(A(H)i ,j)

perm(A(H))
. (1)

• The m balance is doubly stochastic since every vertex is
incident with every DCU.

• The loop with the smallest value in the m balance
corresponds to the vertex that is in the most DCUs.

• The m balance is very hard to calculate.

m balance

Let H be the auxilary digraph created as before. From H we can
create a matrix called the m balance(A(H)) that gives the fraction
of DCUs that every arc of H is in.

m bal(A(H)) =
ai ,j × perm(A(H)i ,j)

perm(A(H))
. (1)

• The m balance is doubly stochastic since every vertex is
incident with every DCU.

• The loop with the smallest value in the m balance
corresponds to the vertex that is in the most DCUs.

• The m balance is very hard to calculate.

m balance

Let H be the auxilary digraph created as before. From H we can
create a matrix called the m balance(A(H)) that gives the fraction
of DCUs that every arc of H is in.

m bal(A(H)) =
ai ,j × perm(A(H)i ,j)

perm(A(H))
. (1)

• The m balance is doubly stochastic since every vertex is
incident with every DCU.

• The loop with the smallest value in the m balance
corresponds to the vertex that is in the most DCUs.

• The m balance is very hard to calculate.

m balance

Let H be the auxilary digraph created as before. From H we can
create a matrix called the m balance(A(H)) that gives the fraction
of DCUs that every arc of H is in.

m bal(A(H)) =
ai ,j × perm(A(H)i ,j)

perm(A(H))
. (1)

• The m balance is doubly stochastic since every vertex is
incident with every DCU.

• The loop with the smallest value in the m balance
corresponds to the vertex that is in the most DCUs.

• The m balance is very hard to calculate.

Sinkhorn Balancing.

Algorithm 4: Sinkhorn Selection

Data: A Digraph G = (V ,U)
Result: A vertex v
begin

A←− adjacency matrix of G
A←− add ones to the diagonal of A
for i ∈ {1, ..., dlog(n)e} do

A←− normalize the rows of A
A←− normalize the columns of A

end
v is the vertex corresponding to the lowest value on the
diagonal of A
return v

end

• Soules [1991] showed that Algorithm 4 converges quickly if A
is totally supported. Reducing to strongly connected
components guarantees this.

• Beichl and Sullivan [1999] showed that the limiting matrix of
the Sinkhorn-Knopp algorithm can be used to estimate the
permanent of A.

• We observed that we only need to complete log(n) iterations
for the order to settle down.

Sinkhorn Balancing.

Algorithm 5: Sinkhorn Selection

Data: A Digraph G = (V ,U)
Result: A vertex v
begin

A←− adjacency matrix of G
A←− add ones to the diagonal of A
for i ∈ {1, ..., dlog(n)e} do

A←− normalize the rows of A
A←− normalize the columns of A

end
v is the vertex corresponding to the lowest value on the
diagonal of A
return v

end

• Soules [1991] showed that Algorithm 4 converges quickly if A
is totally supported. Reducing to strongly connected
components guarantees this.

• Beichl and Sullivan [1999] showed that the limiting matrix of
the Sinkhorn-Knopp algorithm can be used to estimate the
permanent of A.

• We observed that we only need to complete log(n) iterations
for the order to settle down.

Sinkhorn Balancing.

Algorithm 6: Sinkhorn Selection

Data: A Digraph G = (V ,U)
Result: A vertex v
begin

A←− adjacency matrix of G
A←− add ones to the diagonal of A
for i ∈ {1, ..., dlog(n)e} do

A←− normalize the rows of A
A←− normalize the columns of A

end
v is the vertex corresponding to the lowest value on the
diagonal of A
return v

end

• Soules [1991] showed that Algorithm 4 converges quickly if A
is totally supported. Reducing to strongly connected
components guarantees this.

• Beichl and Sullivan [1999] showed that the limiting matrix of
the Sinkhorn-Knopp algorithm can be used to estimate the
permanent of A.

• We observed that we only need to complete log(n) iterations
for the order to settle down.

fvs sh del

Algorithm 7: FVS SH Del

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

H ←− G
S ←− ∅
LL graph reductions(H,S)
L←− get SCC (H)
while |L| 6= 0 do

remove g from L
v ←− Sinkhorn selection(g)
remove v from g
S ←− S + {v}
LL reductions(g , S)
L←− get SCC (g) + L

end
S ←− remove redundant nodes(G ,S)
return S

end

O(|S |log(n)n2)

fvs sh del mod

Algorithm 8: FVS SH DEL MOD

Data: A Digraph G = (X ,U)
Result: A FVS S
begin

H ←− G
S ←− ∅
LL graph reductions(H,S)
while |V (H)| 6= 0 do

v ←− Sinkhorn selection(H)
remove v from H
S ←− S + {v}
LL reductions(H,S)

end
S ←− remove redundant nodes(G ,S)
return S

end

Remove Redundant Vertices

1 Let S = S0 and assume S0 is in the reverse order in that the
vertices of S where selected by Algorithm 7.

2 We then recursively select vertex vi from Si−1 and check to
see if G − (Si−1 − {v}) is a DAG.

3 If it is not a DAG, then we let Si = Si−1.

4 If it is a DAG, then v is redundant and we let Si = Si−1−{v}.

Remove Redundant Vertices

1 Let S = S0 and assume S0 is in the reverse order in that the
vertices of S where selected by Algorithm 7.

2 We then recursively select vertex vi from Si−1 and check to
see if G − (Si−1 − {v}) is a DAG.

3 If it is not a DAG, then we let Si = Si−1.

4 If it is a DAG, then v is redundant and we let Si = Si−1−{v}.

Remove Redundant Vertices

1 Let S = S0 and assume S0 is in the reverse order in that the
vertices of S where selected by Algorithm 7.

2 We then recursively select vertex vi from Si−1 and check to
see if G − (Si−1 − {v}) is a DAG.

3 If it is not a DAG, then we let Si = Si−1.

4 If it is a DAG, then v is redundant and we let Si = Si−1−{v}.

Remove Redundant Vertices

1 Let S = S0 and assume S0 is in the reverse order in that the
vertices of S where selected by Algorithm 7.

2 We then recursively select vertex vi from Si−1 and check to
see if G − (Si−1 − {v}) is a DAG.

3 If it is not a DAG, then we let Si = Si−1.

4 If it is a DAG, then v is redundant and we let Si = Si−1−{v}.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Lower Bounds

• An FVS S is said to be an ε-approximation if |S | ≤ ετ(G).

• If t ≤ τ(G), then S is an |S |t -approximation.

• Let X be a set of cycles and cX (x) be the number of cycles
that hit x .

• If T is an FVS, then ∑
v∈T

cX (v) ≥ |X |. (2)

• Let α, β be orderings of V (G) and T respectively such that
cX (αi) ≥ cX (αi+1) and β and cX (βi) ≥ cX (βi+1)

•
t∑

i=0

cX (αi) ≥ |X |
t′∑
i=0

cX (βi) ≥ |X |.

•

kτ(G) ≥
t∑

i=0

cX (αi) ≥ |X | = ε|S |.

Random digraphs

• We created Erdos-Renyi random digraphs by visiting every
ordered pair of vertices and placing an arc with probability p
between them.

• A digraph is k-regular if d+(v) = d−(v) = k for every
v ∈ V (G).

• We chose random k-regular digraphs uniformly by first using
the methods of Kleitman-Wang to create a k-regular digraph.

• We then perform k2n arc switches to simulate a uniformly
chosen one.

Random digraphs

• We created Erdos-Renyi random digraphs by visiting every
ordered pair of vertices and placing an arc with probability p
between them.

• A digraph is k-regular if d+(v) = d−(v) = k for every
v ∈ V (G).

• We chose random k-regular digraphs uniformly by first using
the methods of Kleitman-Wang to create a k-regular digraph.

• We then perform k2n arc switches to simulate a uniformly
chosen one.

Random digraphs

• We created Erdos-Renyi random digraphs by visiting every
ordered pair of vertices and placing an arc with probability p
between them.

• A digraph is k-regular if d+(v) = d−(v) = k for every
v ∈ V (G).

• We chose random k-regular digraphs uniformly by first using
the methods of Kleitman-Wang to create a k-regular digraph.

• We then perform k2n arc switches to simulate a uniformly
chosen one.

Random digraphs

• We created Erdos-Renyi random digraphs by visiting every
ordered pair of vertices and placing an arc with probability p
between them.

• A digraph is k-regular if d+(v) = d−(v) = k for every
v ∈ V (G).

• We chose random k-regular digraphs uniformly by first using
the methods of Kleitman-Wang to create a k-regular digraph.

• We then perform k2n arc switches to simulate a uniformly
chosen one.

v1

v2

v3

v4

Erdos-Renyi Random Digraphs n = 100

2 3 4 5 6 7 8 9 10 11 12
Expected Degree

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
M

e
a
n
 F

V
S
 A

p
p
ro

x
im

a
ti

o
n

500 Erdos-Renyi Digraphs with n =100

MFVSmean
MaxDeg
fvs_sh_del_mod

fvs_sh_del

Erdos-Renyi Random Digraphs n = 500

3 4 5 7 9 10 12 13 15
Expected Degree

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5
M

e
a
n
 F

V
S
 A

p
p
ro

x
im

a
ti

o
n

100 Erdos-Renyi Digraphs with n =500

MFVSmean
MaxDeg
fvs_sh_del_mod

fvs_sh_del

Erdos-Renyi Random Digraphs n = 1000

3 4 5 7 10 12 15
Expected Degree

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2
M

e
a
n
 F

V
S
 A

p
p
ro

x
im

a
ti

o
n

100 Erdos-Renyi Digraphs with n =1000

MFVSmean
MaxDeg
fvs_sh_del_mod

fvs_sh_del

k-Regular Digraphs n = 100

2 3 4 5 6 7
Degree k

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
M

e
a
n
 F

V
S
 A

p
p
ro

x
im

a
ti

o
n

100 k-regular Digraphs with n =100

MFVSmean
MaxDeg
fvs_sh_del_mod

fvs_sh_del

k-Regular Digraphs n = 1000

2 3 4 5 6
Degree k

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
M

e
a
n
 F

V
S
 A

p
p
ro

x
im

a
ti

o
n

100 k-regular Digraphs with n =1000

MFVSmean
MaxDeg
fvs_sh_del_mod

fvs_sh_del

Entropy

For many small digraphs the Sinkhorn method performed better
than the m balance.

The entropy of a doubly stochastic matrix A
is

entropy(A) = −
∑
i ,j

ai ,j log(ai ,j).

Beichl and Sullivan showed the limiting matrix of the
Sinkhorn-Knopp algorithm maximizes the entropy for all
doubly-stochastic matrices with a given zero-one pattern.

Entropy

For many small digraphs the Sinkhorn method performed better
than the m balance. The entropy of a doubly stochastic matrix A
is

entropy(A) = −
∑
i ,j

ai ,j log(ai ,j).

Beichl and Sullivan showed the limiting matrix of the
Sinkhorn-Knopp algorithm maximizes the entropy for all
doubly-stochastic matrices with a given zero-one pattern.

Entropy

For many small digraphs the Sinkhorn method performed better
than the m balance. The entropy of a doubly stochastic matrix A
is

entropy(A) = −
∑
i ,j

ai ,j log(ai ,j).

Beichl and Sullivan showed the limiting matrix of the
Sinkhorn-Knopp algorithm maximizes the entropy for all
doubly-stochastic matrices with a given zero-one pattern.

Isabel Beichl and Francis Sullivan. Approximating the permanent
via importance sampling with application to the dimer covering
problem. Journal of Computational Physics, 149(1):128 – 147,
1999. ISSN 0021-9991. doi:
http://dx.doi.org/10.1006/jcph.1998.6149. URL
http://www.sciencedirect.com/science/article/pii/

S0021999198961496.

R. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

Mile Lemaic and Ewald Speckenmeyer. Markov-chain-based
heuristics for the minimum feedback vertex set problem.
Technical report, 2009. URL
http://e-archive.informatik.uni-koeln.de/596/.

Hanoch Levy and David W Low. A contraction algorithm for
finding small cycle cutsets. Journal of Algorithms, 9(4):470 –
493, 1988. ISSN 0196-6774. doi:
http://dx.doi.org/10.1016/0196-6774(88)90013-2. URL

http://www.sciencedirect.com/science/article/pii/S0021999198961496
http://www.sciencedirect.com/science/article/pii/S0021999198961496
http://e-archive.informatik.uni-koeln.de/596/

http://www.sciencedirect.com/science/article/pii/

0196677488900132.

George W. Soules. The rate of convergence of Sinkhorn balancing.
Linear Algebra and its Applications, 150:3–40, May 1991. ISSN
00243795. doi: 10.1016/0024-3795(91)90157-R. URL
http://www.sciencedirect.com/science/article/pii/

002437959190157Rhttp://linkinghub.elsevier.com/

retrieve/pii/002437959190157R.

Ewald Speckenmeyer. On feedback problems in digraphs. In
Manfred Nagl, editor, Graph-Theoretic Concepts in Computer
Science, volume 411 of Lecture Notes in Computer Science,
pages 218–231. Springer Berlin Heidelberg, 1990. ISBN
978-3-540-52292-8. doi: 10.1007/3-540-52292-1 16. URL
http://dx.doi.org/10.1007/3-540-52292-1_16.

Robert Endre Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160, 1972.

http://www.sciencedirect.com/science/article/pii/0196677488900132
http://www.sciencedirect.com/science/article/pii/0196677488900132
http://www.sciencedirect.com/science/article/pii/002437959190157R http://linkinghub.elsevier.com/retrieve/pii/002437959190157R
http://www.sciencedirect.com/science/article/pii/002437959190157R http://linkinghub.elsevier.com/retrieve/pii/002437959190157R
http://www.sciencedirect.com/science/article/pii/002437959190157R http://linkinghub.elsevier.com/retrieve/pii/002437959190157R
http://dx.doi.org/10.1007/3-540-52292-1_16

	FVS Heuristics
	Digraph Reductions
	Selection Methods
	Removing Redundant Vertices

	Analysis

