Alignements de deux séquences Module Informatique Génomique - Licence 3

http://igm.univ-mlv.fr/~fsikora/ens/2008-2009/L3/genomique/

Plan

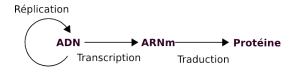
Pourquoi comparer des séquences?

Comparaison et alignement

Principes généraux de la recherche d'alignements optimaux

L'alignement global

Conclusion


Plan

Pourquoi comparer des séquences?

Qu'est-ce qu'une séquence?

Rappels sur les séquences génomiques

- ► Enchaînement de nucléotides le long d'une macromolécule d'ADN.
- Représentée par une chaîne de caractères utilisant l'alphabet {A,C,G,T} - qui distingue les quatre types de nucléotides.

Pourquoi comparer des séquences?

- ▶ Déterminer les similitudes éventuelles entre deux séquences génomiques ou protéiques.
- ▶ But : inférer des connaissances sur une nouvelle séquence à partir des connaissances sur d'autres séquences proches
 - ce qui se ressemble s'assemble ...
 - ▶ si la fonction d'une séquence est connue, la fonction de la seconde peut s'en déduire.

Pourquoi comparer des séquences?

Stockage des connaissances dans des bases de données.

▶ Lors de la découverte d'une sequence par un biologiste :

recherche des séquences similaires.

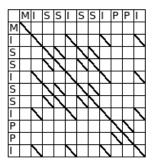
- La comparaison de séquences permet également
 - de prédire des gènes
 - de déterminer la fonction d'une protéine
 - de prédire des structures

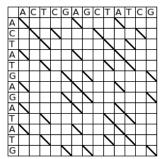
D'où viennent les similitudes entre séquences?

- Sources des différences entre les séquences :
 - substitution d'un nucléotide par un autre
 - disparition d'un nucléotide
 - apparition d'un nucléotide
- Propagation de ces modification au sein des populations par héritage génétique.
- Evolution des génomes au cours du temps.

D'où viennent les similitudes entre séquences?

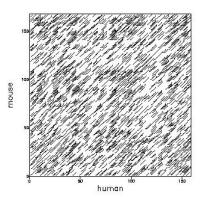
Histoire des espèces


- Représentable par un arbre dont les feuilles sont les espèces actuelles.
- Deux espèces sont considérées d'autant plus proches que leur espèce ancestrale commune est récente.



Comparaison et alignement

Vers une première solution - Dotplot


► Staden 1982 : Dotplot (matrice de points)

Limites de Dotplot

- Principalement, la lisibilité!
- Les petites similarités créent du bruit.
- Il existe des techniques pour le limiter
- ▶ Il suffit par exemple de ne considérer que les diagonales de taille > k

Distance de Hamming

- ► C'est la mesure de similarité triviale entre deux séquences de même longueur (nombre de différences).
- Formellement : $d(a,b) = \sum_{i=0}^{n-1} (a[i] \oplus b[i])$

Exemple

Comparaison simple d'une paire de séquences

- ► (a) AGTATC et AGATGC; 3 différences
- ▶ (b) AGTTTC et AGATTC; 1 différence

Les séquences de la paire (b) sont considérées comme étant plus similaires que celles de la paire (a) si on considère la distance de Hamming.

Limite de la distance de Hamming

- ▶ Les séquences à comparer ont rarement la même longueur.
- ▶ Même si c'est le cas, rien ne dit qu'elles doivent être comparées sur cette longueur exactement.
- ▶ Dans le cadre de séquences génomiques, des nucléotides ou des acides aminés ont pu s'insérer ou au contraire disparaître au cours de l'évolution (cascade de différences).

Alignement et distance d'édition

- ▶ Alignement = mise en correspondance de 2 séquences lettre à lettre.
- Pour tenir compte des insertions ou délétions éventuelles, il faut introduire un caractère particulier, appelé gap et noté —.

Exemple

Coût d'un alignement

Calcul du coût

- ▶ Il faut fixer le coût d'insertion d'un gap (appelé indel).
- ▶ Le coût d'un alignement (S', T') de S et T correspond alors à $cout(S', T') = \sum_{i=0}^{|S'|-1} \alpha(S'[i], T'[i]) tq$

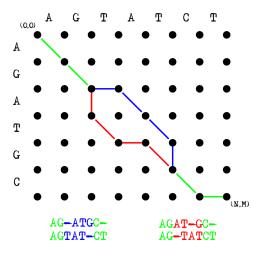
$$\alpha(S'[i], T'[i]) = \begin{cases} sub, & \text{si } S'[i] \neq T'[i] \\ indel, & S'[i] \text{ ou } T'[i] \text{ est un gap} \\ 0, sinon \end{cases}$$

Exemple

Avec indel = 2 et sub = 1.

$$S'$$
 $AG-ATGCT$ $AGAT-GCT$ T' $AGTAT-C AG-TATC Co\hat{u}t$ 6 7

Calcul des alignements optimaux


- Parmi tous les alignements possibles, le principe est de retenir ceux (il peut y en avoir plusieurs) dont le coût est minimal.
- Un alignement de coût minimal est dit optimal.
- La similarité des deux séquences se mesure alors par ce coût minimal.

Plan

Principes généraux de la recherche d'alignements optimaux

Une représentation graphique d'un alignement

Le graphe d'édition

Algorithme de recherche

Algorithme

- ► Un alignement (ou chemin) optimal de longueur L s'obtient en calculant un alignement partiel (ou sous-chemin) optimal de longueur L-1.
- Or, il n'existe que trois sous-chemins de longueur L-1 du chemin arrivant au noeud (N,M) :
 - celui venant du noeud (N,M-1);
 - ► celui venant du noeud (N-1,M-1) et
 - celui celui venant du noeud (N-1,M).

Exemple

ACGGCTA T		ACGGCTA T		ACGGCTAT -			
33333	ou	\$ \$ \$ \$ \$	ou	33333			
ACTGTA T		ACTGTAT -		ACTGTA	Т		

Algorithme de recherche

Formule de récurrence

On note Cout(i,j) le coût optimal entre S[0..i] et T[0..j]

- Cout(0,0) = 0
- ightharpoonup Cout(0, j) = Cout(0, j 1) + indel
- $\qquad \qquad \mathsf{Cout}(i,0) = \mathsf{Cout}(i-1,0) + \mathsf{indel}$

$$Cout(i,j) = min \begin{cases} Cout(i-1,j-1) + sub(S[i], T[j]) \\ Cout(i,j-1) + indel \\ Cout(i-1,j) + indel \end{cases}$$

Que se passe-t-il si on implémente ces formules de manière récursive?

Plan

L'alignement global

Programmation dynamique – Neddleman et Wunsch (1970)

- Avec la méthode récursive, coût d'un même chemin calculé plusieurs fois inutilement : complexité exponentielle.
- ▶ Utilisation de la programmation dynamique : stockage des résultats intermédiaires dans une table : complexité polynomiale.
- Reste une méthode exacte.

Programmation dynamique

- ▶ Idée : déterminer la solution optimale d'un problème à partir de la solution optimale d'un sous-problème.
- ▶ Parfait dans notre cas : l'alignement optimal de deux séquences de longueur L est égal à l'alignement optimal de ces séquences de longueur L-1, plus l'alignement de la lettre L.
- ▶ Méthode algorithmique souvent utilisée ("fibonnaci", voyageur de commerce, multiplication de matrices,...)

L'alignement global

Evaluation d'une ressemblance globale entre deux séquences.

- Données :
 - Deux séquences
 - Des coûts pour les opérations d'édition
- Problème :
 - ► Trouver un alignement optimal?

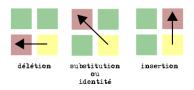
1ere étape

- ► Consiste à créer une table indéxée par les deux séquences
- On remplit chaque case en utilisant les données calculées dans les cases précédentes.

		Α	G	Т	Α	Т
	0	1	2	3	4	5
Α	1					
G	2					
Α	3					
Т	4					

- Exemple avec deux séquences de tailles N et M
- ▶ Coût indel et coût substitution de 1.

1ere étape


		Α	G	Т	Α	Т
	0	1	2	3	4	5
Α	1	0	1	2	3	4
G	2	1	0	1	2	3
Α	3	2	1	1	1	2
Т	4	3	2	1	2	1

1ere étape

- \blacktriangleright Finnalement, on obtient un tableau à N+1 lignes et M+1colonnes.
- ▶ En case (i, j): coût du meilleur alignement impliquant les ipremiers caractères de la première séquence et les *j* premiers de la seconde.
- \triangleright Donc, en (N, M): coût de tout alignement optimal des séquences complètes.
- ▶ Mais ce tableau ne dit pas explicitement quels sont les alignements optimaux.

2nde étape

- ▶ Pour connaître l'alignement optimal, il faut appliquer un algorithme de backtracking.
- ▶ Partir de (N, M) en choisissant à chaque fois la direction qui ramène au noeud précédent jusqu'à arriver en (0,0)
- ▶ Le chemin ainsi tracé fournit l'alignement.

Complexité de l'algorithme

- ▶ Pour le calcul du score d'alignement :
 - ► (Etape 1) O(nm) en temps, $O(min\{n, m\})^1$ en espace
- ▶ Pour la construction de l'alignement :
 - ▶ (Etapes 1 et 2) O(nm) en temps et en espace

Plan

Conclusion

Conclusion

- Comparaison de séquences très utilisé en bioinformatique.
- Une méthode exacte pour l'alignement global par programmation dynamique à complexité polynomiale.
- Méthode similaire pour l'alignement local.
- Existe des heuristiques plus rapides (BLAST, FASTA,...).
- Généralisation de la programmation dynamique à l'alignement de k séquences impossible en pratique.

Bibliographie

Références

- 1. D. Gusfield. *Algorithms on Strings, Trees and Sequences*. Cambridge University Press, 1997.
- 2. M.S. WATERMAN. *Introduction to Computational Biology*. Chapman & Hall, 1995.
- 3. J. Setubal and J. Meidanis. *Introduction to Computational Molecular Biology*. PWS Publishing Co, 1997.
- 4. M. Crochemore, C. Hancart and T. Lecroq. *Algorithmique du texte.* Vuibert, 2001.