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WHICH NONNEGATIVE MATRICES ARE SLACK MATRICES?

JOÃO GOUVEIA, ROLAND GRAPPE, VOLKER KAIBEL, KANSTANTSIN PASHKOVICH,
RICHARD Z. ROBINSON, AND REKHA R. THOMAS

Abstract. In this paper we characterize the slack matrices of cones and poly-
topes among all nonnegative matrices. This leads to an algorithm for deciding
whether a given matrix is a slack matrix. The underlying decision problem is
equivalent to the polyhedral verification problem whose complexity is unknown.

1. Introduction

This paper is concerned with a class of nonnegative matrices with real entries,
called slack matrices, that arise naturally from polyhedral cones and polytopes.
Given a polytope P ⊂ Rn with vertices v1, . . . , vp and facet inequalities aTj x ≤ βj

for j = 1, . . . , q, a slack matrix of P is the p × q nonnegative matrix whose (i, j)-
entry is βj − aTj vi, the slack (distance from equality), of the ith vertex vi in the jth

facet inequality aTj x ≤ βj of P . A similar definition holds for polyhedral cones.
Slack matrices form an interesting class of nonnegative matrices with many spe-

cial properties. Most obviously, if M is a slack matrix of a polytope P , then the
zeros in M record the face lattice of P and hence the combinatorial structure of
P . In its entirety, M specifies an embedding of P up to affine transformation.
However, slack matrices carry much more surprising information about P . In [15],
Yannakakis proved that the nonnegative rank of a slack matrix of P is the minimum
k such that P is the linear image of an affine slice of the positive orthant Rk

+. We
use R+ to denote the set of nonnegative real numbers. The nonnegative rank of a

matrix M ∈ R
p×q
+ is the smallest k such there there exists vectors a1, . . . , ap ∈ Rk

+

and b1, . . . , bq ∈ Rk
+ such that Mij = aTi bj . Affine slices of positive orthants that

project onto P are called polyhedral lifts or polyhedral extended formulations of P
and the smallest k such that Rk

+ admits a lift of P is called the (polyhedral) ex-
tension complexity or nonnegative rank of P . If the extension complexity of P is
small (polynomial in the dimension of P ), then usually it is possible to optimize a
linear function over P in polynomial time by optimizing an appropriate function on
the lift. This is a powerful technique in optimization that yields polynomial time
algorithms for linear optimization over complicated polytopes. There are many
instances of n-dimensional polytopes with exponentially many (in n) facets that
allow small polyhedral lifts.
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Yannakakis’ result was generalized in [5] to lifts of convex sets by affine slices of
convex cones via cone factorizations of slack operators. Even in the larger context
of cone lifts of convex sets, the case of polytopes is the simplest and the theory
relies on slack matrices of polytopes and their factorizations through cones. Thus,
understanding the structure of these matrices is fundamental for this theory. There
are several phenomena that occur in the class of nonnegative matrices that have
not yet been observed for slack matrices. For instance, an important open question
is whether there exists a family of slack matrices of polytopes that exhibit an
exponential gap between nonnegative rank and positive semidefinite rank. (If Sk

+

denotes the cone of k × k real symmetric positive semidefinite matrices, then the
positive semidefinite rank of a matrix M ∈ R

p×q
+ is the smallest k such that there

exists matrices Ai ∈ Sk
+, i = 1, . . . , p and Bj ∈ Sk

+, j = 1, . . . , q such that Mij =
〈Ai, Bj〉.) While there are simple families of matrices that exhibit even arbitrarily
large gaps between nonnegative and positive semidefinite ranks [5, Example 5], no
family of slack matrices with this property is known. Such a family would be a
clear witness for the power of semidefinite programming over linear programming
in lifts of polytopes.

This paper was motivated by the many open questions about slack matrices
which rely on understanding the structure of these matrices. We establish two
main characterizations of slack matrices of polyhedral cones and polytopes. In
Section 2 we establish linear algebraic characterizations: Theorem 1 for cones and
Theorem 6 for polytopes. In Section 4 we give combinatorial characterizations:
Theorem 22 for polytopes and Theorem 24 for polyhedral cones. In Section 3 we
use our characterization from Section 2 to give an algorithm for recognizing slack
matrices. The computational complexity of this problem is unknown and is equiva-
lent to the polyhedral verification problem. There are several further geometric and
complexity results about slack matrices throughout the paper.

Notation: For a set of vectors A = {a1, . . . , ap}, cone(A) := {
∑

λiai : λi ≥ 0}
is the cone spanned by A; conv(A) := {

∑
λiai : λi ≥ 0,

∑
λi = 1} is the convex

hull of A; lin(A) := {
∑

λiai : λi ∈ R} is the linear span of A, and aff(A) :=
{
∑

λiai :
∑

λi = 1} is the affine span of A. The above sets can also be defined for
an infinite subset A ⊂ Rn by taking unions over all finite subsets of A. For a n× q
matrix M , we let rows(M) and cols(M) denote the sets of all rows and columns,
respectively, of M . We let A ·M be the set of vectors {xTM : x ∈ A}. For a set
K ⊂ Rn, lineal(K) is the largest subspace contained in K, known as the lineality
space of K. The dimension of a polytope P , dim(P ) is the dimension of aff(P ), the
affine hull of P , and the dimension of a cone K is the dimension of lin(K).

2. Geometric Characterizations of Slack Matrices

2.1. Slack Matrices of Polyhedral Cones. Consider the polyhedral cone

K = {x ∈ R
n : xTB ≥ O} = R

p
+ ·A

in Rn constrained by the columns of the matrix B ∈ Rn×q and generated by the
rows of the matrix A ∈ Rp×n. We call (the set of rows of) A a V-representation and
(the set of columns of) B an H-representation of K. The slack matrix of K with

respect to the representation (A,B) is S = AB ∈ R
p×q
+ . Its (i, j)-entry records the

“slack” of the ith generator of K with respect to the jth inequality of K in the
given description of K.

2
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Let SK denote the set of all slack matrices of K. For S ∈ SK , any matrix
obtained by scaling the rows and columns of S by positive reals is again in SK

since scaling the vectors in a V and/or H-representation of K does not change
K. Also, SK can have matrices of different sizes as adding redundant inequalities
and/or generators to the representations of K does not change K. From

(Rn ·B) ∩ R
q
+ = K · B = (Rp

+ ·A) · B = R
p
+ · S

⊆ (Rp · S) ∩ R
q
+ = (Rp · AB) ∩R

q
+ ⊆ (Rn · B) ∩ R

q
+

we find that Rp
+ · S = Rp · S ∩ R

q
+ which says that the cone generated by the rows

of S coincides with the nonnegative part of the row span of S. In fact, this relation
characterizes slack matrices of cones:

Theorem 1. A nonnegative matrix M ∈ R
p×q
+ is a slack matrix of a polyhedral

cone if and only if

(1) R
p
+ ·M = R

p ·M ∩ R
q
+,

or in other words, the cone spanned by the rows of M coincides with the nonnegative
part of the row span of M .

Proof. It remains to show that every matrix M ∈ R
p×q
+ with R

p
+ ·M = R

p ·M ∩R
q
+

is a slack matrix of some cone. Let n = rank(M) and choose a bijective linear map

ϕ : Rp ·M → R
n

that preserves the (standard) scalar product (an isometry). Let Mi denote the ith
row of M and let A ∈ Rp×n be the matrix whose rows are ϕ(Mi). Let π : Rq →
Rp ·M be an orthogonal projection and let B ∈ Rn×q be the matrix whose columns
are ϕ(π(e1)), . . . ϕ(π(eq)) where ei is the ith standard unit vector in Rq. Then
M = AB and using (1),

K = {x ∈ R
n : xTB ≥ O} = {ϕ(y) : y ∈ R

p ·M, ϕ(y)TB ≥ O}

= ϕ(Rp ·M ∩ R
q
+) = ϕ(Rp

+ ·M) = R
p
+ ·A ,

which shows that M is a slack matrix of the cone K. �

Recall that the dual cone of K is the cone

K⋆ = {y ∈ R
n : xT y ≥ 0 for all x ∈ K} = {y ∈ R

n : Ay ≥ 0} = B · Rq
+.

Hence, ST is a slack matrix of K⋆ and we get the following result.

Proposition 2. A nonnegative real matrix is a slack matrix of a polyhedral cone
if and only if its transpose is also the slack matrix of a polyhedral cone.

In particular, we obtain the following consequence of Theorem 1.

Corollary 3. A nonnegative matrix M ∈ R
p×q
+ is a slack matrix of a polyhedral

cone if and only if

(2) M · Rq
+ = M · Rq ∩ R

p
+,

or in other words, the cone spanned by the columns of M coincides with the non-
negative part of the column span of M .

We say that a matrix M satisfies the row cone generating condition (RCGC )
if (1) holds and the column cone generating condition (CCGC ) if (2) holds.

3
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Corollary 4. For a nonnegative matrix M ∈ R
p×q
+ the following statements are

pairwise equivalent:

• M is a slack matrix of a polyhedral cone.
• M satisfies the RCGC.
• M satisfies the CCGC.

The equivalence of RCGC and CCGC for a general nonnegative matrix is not
obvious. However, its proof becomes transparent via the theory of slack matrices
of polyhedral cones and cone duality.

For a nonnegative M with RCGC/CCGC, the proof of Theorem 1 showed how
to produce a cone K such that M ∈ SK . We now give another way to produce such
a cone K that will be useful later. For any matrix M ∈ Rp×q of rank k, we will call
a factorization of the form M = AB with A ∈ Rp×k, rank(A) = k and B ∈ Rk×q,
rank(B) = k a rank factorization of M .

Lemma 5. Let M ∈ R
p×q
+ be the slack matrix of a polyhedral cone and let M = AB

be a rank factorization of M . Then if K is the cone generated by the rows of A,
the columns of B form an H-representation of K. In particular, M ∈ SK .

Proof. Let K = cone({a1, . . . , ap}) and K̃ = {x ∈ R
k : xT bj ≥ 0, j = 1, . . . , q}

where ai is the ith row of A and bj is the jth column of B. We need to show that

K = K̃. Since M is a nonnegative matrix, K ⊆ K̃. To prove the reverse inclusion
we will argue that every linear function that is nonnegative onK is also nonnegative

on K̃. Let k = rank(M). Since M has the CCGC and A · Rk = M · Rq (since
rank(A) = k), we have thatM ·Rq

+ = A·Rk∩Rp
+. Suppose L(x) = ℓ1x1+. . .+ℓkxk ≥

0 for all x ∈ K. Then the evaluation vector (L(a1), . . . , L(ap))
T = Aℓ lies in

M · Rq
+. Since the columns of M are Abj for j = 1, . . . , q, there exists λj ≥ 0 such

that Aℓ =
∑q

j=1 λj(Ab
j) = A

∑q

j=1 λjb
j. This implies that ℓ =

∑q

j=1 λjb
j since

the columns of A are linearly independent. Therefore, ℓ is a nonnegative linear

combination of the bj ’s and L(x) ≥ 0 is valid on K̃. �

2.2. Slack Matrices of Polytopes. We now investigate the slack matrices of
polytopes. Let V ∈ Rp×n and P = conv(rows(V )) be the polytope in Rn that is
the convex hull of the rows of V . Suppose also that P = {x ∈ Rn : Wx ≤ w}
with W ∈ Rq×n and w ∈ Rq. To avoid unnecessary inconveniences, we assume
that dim(P ) ≥ 1. We call (the set of rows of) V a V-representation and (the set
of columns of) [w,−W ]T an H-representation of P . The slack matrix of P with
respect to the representation (V,W,w) is then

(3) S = [1, V ] · [w,−W ]T ∈ R
p×q
+ .

We denote the set of all slack matrices of P by SP . Clearly, scaling the columns
of a slack matrix of P by positive scalars yields another slack matrix of P , because
scaling the vectors in an H-representation of P yields another H-representation of
P . However, we cannot scale the rows of a matrix S ∈ SP and still stay in SP .

The matrix S is also the slack matrix of the homogenization cone of P :

(4) P h = R
p
+ · [1, V ] = {(x0, x) ∈ R× R

n : Wx ≤ x0w}

with respect to the representation ([1, V ],
[

w
T

−W
T

]
). Since dim(P ) ≥ 1, there is

some c ∈ Rn with

max{cTx : x ∈ P} −min{cTx : x ∈ P} = 1 ,
4
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and hence, due to LP-duality, we get

(5) (1,OT ) ∈ R
q · (w,W ) and so also, (1,OT ) ∈ R

q · (w,−W ).

From (3) and (5) we get that 1 ∈ S · Rq, the column span of S. These properties
characterize the slack matrices of polytopes of dimension at least one:

Theorem 6. A matrix M ∈ R
p×q
+ with rank(M) ≥ 2 is a slack matrix of a polytope

if and only if M is a slack matrix of a polyhedral cone and 1 ∈ M · Rq.

Proof. It suffices to show that a matrix M ∈ R
p×q
+ with 1 ∈ M ·Rq that is the slack

matrix of some cone K ⊆ Rn with respect to a representation (A,B) is also the
slack matrix of some polytope. To construct such a polytope, choose any µ ∈ Rq

such that 1 = Mµ and define c = Bµ. Then Ac = 1 since M = AB. Define
P = conv(rows(A)). Then we have:

P = {yTA : yT1 = 1, y ∈ R
p
+} = {yTA : yTAc = 1, y ∈ R

p
+}

= {x ∈ K : xT c = 1} = {x ∈ R
n : xTB ≥ O, xT c = 1} .

Mapping the hyperplane in Rn defined by xT c = 1 isometrically to Rn−1 (as in
the proof of Theorem 1), we find that M is a slack matrix of the resulting image
of P . �

Corollary 7. A matrix M ∈ R
p×q
+ with rank(M) ≥ 2 is a slack matrix of some

polytope if and only if it satisfies the RCGC (or, equivalently, the CCGC) and1 ∈ M · Rq holds.

Theorem 1 geometrically characterizes the slack matrices of cones as those ma-
trices M ∈ R

p×q
+ that satisfy

(6) cone(rows(M)) = lin(rows(M)) ∩R
q
+ .

There is an analogous geometric characterization of slack matrices of polytopes.

Corollary 8. A matrix M ∈ R
p×q
+ with rank(M) ≥ 2 is a slack matrix of some

polytope if and only if

(7) conv(rows(M)) = aff(rows(M)) ∩ R
q
+ .

Proof. First, suppose that M is a slack matrix of some polytope. Then by Corol-
lary 7, we have that M satisfies (6) and 1 ∈ M ·Rq. Hence, there exists some c ∈ R

q

such that Mc = 1 and the affine hyperplane L = {x ∈ Rq : xT c = 1} contains the
rows of M . Intersecting L with both sides of (6), we obtain (7).

For the reverse implication, let M ∈ R
p×q
+ be a nonnegative matrix satisfying (7).

Using any isometry ϕ between the d-dimensional affine subspace aff(rows(M))
and Rd, we find that M is a slack matrix of the ϕ-image of the polytope defined
in (7). �

We have seen above that every slack matrix of a polytope P has the all-ones
vector in its column span and is also a slack matrix of the homogenization cone P h

of P . The next example shows that not all slack matrices of P h are slack matrices
of P , in fact, this does not even hold for the slack matrices of P h that have the
all-ones vector in their column span.

5
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Example 9. Let P be the square [−1, 1]2. The matrix

M =




4
3 0 4

3 0
2 0 0 2
0 2 2 0
0 4 0 4


 =




2
3

2
3

2
3

1 1 −1
1 −1 1
2 −2 −2







1 1 1 1
1 −1 0 0
0 0 1 −1




is in SPh and 1 is in the column span of M . It is clear, however, that M is not in
SP since each facet of [−1, 1]2 is equidistant from the two vertices not on the facet.
On the other hand, since M has the RCGC/CCGC and 1 is in its column span,
it is the slack matrix of some other polytope Q. To obtain it, write a new rank
factorization of M (note that rank(M) = 3) so that the first factor contains the all
ones vector as its first column as follows:

M =




2
3

2
3

2
3

1 1 −1
1 −1 1
2 −2 −2


UU−1




1 1 1 1
1 −1 0 0
0 0 1 −1



 , U =




1 0 0
1/4 1 0
1/4 0 1





to get

M =




4
3 0 4

3 0
2 0 0 2
0 2 2 0
0 4 0 4


 =




1 2
3

2
3

1 1 −1
1 −1 1
1 −2 −2







1 1 1 1
3/4 −5/4 −1/4 −1/4
−1/4 −1/4 3/4 −5/4



 .

By Lemma 5, M is the slack matrix of the cone with V-representation the rows of
the first factor and H-representation the columns of the second factor. Assuming
the coordinates of this three-dimensional cone are x0, x1, x2, and slicing the cone
with the hyperplane {((x0, x1, x2) : x0 = 1} gives a polytope Q with vertices
(2/3, 2/3), (1,−1), (−1, 1), (−2,−2) and H-representation given by the columns of
the second factor. Then M ∈ SQ.

2.3. Further Results on Slack Matrices of Cones and Polytopes. In this
section we derive some more insight into the geometric relations between cones,
polytopes, and their slack matrices that will be useful in later parts of the paper. We
return to the setup used earlier: K is assumed to be a cone and S the slack matrix
of K with respect to its representation (A,B) where A ∈ Rp×n and B ∈ Rn×q.

First, we will show that every slack matrix of a cone is the slack matrix of
some pointed cone. Recall that we use lin(K) to denote the linear hull of K and
lineal(K) to denote the lineality space of K. Then we have lin(K) = Rp · A and
lineal(K) = leftkernel(B). A cone K is pointed if lineal(K) = {O}. Define

L := lin(K) ∩ lineal(K)⊥ = (Rp · A) ∩ (B · Rq) .

Then we have

lin(K) = L+ lineal(K)

(where the summands are orthogonal to each other) and

K = (K ∩ L) + lineal(K) ,

where K∩L ⊆ L is a pointed (i.e., having trivial lineality space) cone with dim(K∩
L) = dim(L). Denoting by A′ ∈ Rp×n the matrix obtained from A by orthogonal
projections of all rows to L, we have

K ∩ L = R
p
+ · A′ and S = A′B .

6
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By mapping L isometrically to Rdim(L), we thus find that S is a slack matrix of the
pointed cone that is the image of K ∩ L under that map and we get the following:

Lemma 10. A matrix is a slack matrix of a polyhedral cone if and only if it is a
slack matrix of some pointed polyhedral cone.

If the cone K is pointed, then for every zero-row of S = AB the corresponding
row of A is a zero-row as well. Hence, removing any zero-row from S results in
another slack matrix of K. A similar statement clearly holds for adding zero-rows.

Lemma 11. If a matrix S is a slack matrix of a pointed polyhedral cone K then
every matrix obtained from S by adding or removing zero-rows is a slack matrix
of K as well.

Lemmas 10 and 11 together also imply this statement:

Lemma 12. If a matrix is a slack matrix of some polyhedral cone then every
matrix obtained from it by adding or removing zero-rows is a slack matrix of some
polyhedral cone as well.

Let us further investigate the linear map x 7→ xTB. It induces the isomorphism

(8) L
·B

−−−−−−−−→
isomorphism

R
p · S

between the linear space L and the row span of S because of the relations:

L ⊆ lineal(K)⊥ = leftkernel(B)⊥

and
L ·B = (L+ lineal(K)) ·B = lin(K) ·B = (Rp · A) ·B = R

p · S .

It also induces the isomorphism

K ∩ L
·B

−−−−−−−−→
isomorphism

R
p
+ · S

between the cone K ∩L and the cone spanned by the rows of S since (K ∩L) ·B =
((K ∩ L) + lineal(K)) · B = K · B = (Rp

+ · A) · B = R
p
+ · S. In particular, we have

shown the following result:

Lemma 13. A polyhedral cone K is pointed if and only if dim(K) = rank(S) for
any slack matrix S of K.

Recall that if P is a polytope with representation (V,W,w) and slack matrix
S = [1, V ] · B where

B =

[
wT

−WT

]
,

then the homogenization P h of P is a pointed cone that also has S as a slack
matrix. Since P h is pointed, L contains the entire cone and we can restrict the
isomorphism in (8) to the set {1} × P = conv(rows([1, V ])). Thus we have that
{1} × P is isomorphic to conv(rows([1, V ])) · B = conv(rows(S)). This establishes
the first part of the following:

Theorem 14. If S is a slack matrix of the polytope P , then P is isomorphic to
conv(rows(S)). In addition, we have dim(P ) = rank(S)− 1.

Proof. To prove the second statement, note that dim(P h) = dim(P ) + 1. By
Lemma 13, we have that dim(P h) = rank(S). �

7
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In the conic case, we had that M ∈ SK if and only if MT ∈ SK∗ . This correspon-
dence breaks down for polytopes as we see in the example below. The reason behind
this is that we cannot scale V-representations of polytopes by positive scalars.

Example 15. The matrix

M =




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1




is a slack matrix for the triangular prism in R3. Thus, by Corollary 7, M satisfies
both the RCGC and the CCGC, and the all ones-vector is in the column span of M .
However, the all-ones vector is not in the row span of M , so MT is not the slack
matrix of any polytope.

Despite this complication, we can still derive some results for transposes of slack
matrices of polytopes. Recall that the polar of a polytope P ⊂ Rn is

P ◦ = {y ∈ R
n : xT y ≤ 1 for all x ∈ P} .

Then P ◦ is a polytope whenever 0 ∈ int(P ), the interior of P . Since translating
P does not change its slack matrices, we may assume that 0 ∈ int(P ). Therefore,
P has an H-representation of the form P = {x ∈ Rn : Wx ≤ 1} and P ◦ =
conv(rows(W )). Similarly, if P = conv(rows(V )), then P ◦ = {x ∈ Rn : V x ≤ 1}.
This implies that the slack matrix of P with respect to the representation (V,W,1)
is the transpose of the slack matrix of P ◦ with respect to the representation (W,V,1)
and we get the following result that is analogous to Proposition 2 for cones.

Proposition 16. For any polytope P , there exists a slack matrix M ∈ SP such
that MT is also a slack matrix of a polytope.

In the light of Theorem 6, this says that slack matrices of polytopes (which
already have 1 in their column span) allow positive scalings of their columns that
puts 1 into their row span as well. This is false for general nonnegative matrices.

Example 17. Continuing Example 15, we see that the following matrix M ′ ob-
tained by scaling the columns of M is also a slack matrix of the same prism and
does have 1 in its row span:

M ′ =




2 2 0 0 0
2 0 4 0 0
2 0 0 4 0
0 2 0 0 2
0 0 4 0 2
0 0 0 4 2




.

The prism has vertices:

(0, 1,−1), (2,−1,−1), (−2,−1,−1), (0, 1, 1), (2,−1, 1), (−2,−1, 1)

and M ′ comes from the facet description:

z ≤ 1,−y ≤ 1,−x+ y ≤ 1, x+ y ≤ 1,−z ≤ 1.
8
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Therefore, P ◦ has vertices (0, 0, 1), (0,−1, 0), (−1, 1, 0), (1, 1, 0), (0, 0,−1) and is a
bisimplex with slack matrix M ′T .

We can also show a converse to Proposition 16.

Proposition 18. Suppose M ∈ R
p×q
+ such that M and MT are both slack matrices

of polytopes. Then there exists a polytope P , with 0 ∈ int(P ), such that M ∈ SP

and MT ∈ SP◦ .

Proof. Since MT is a slack matrix of a polytope, we have that 1 ∈ R
p
+ ·M . Without

loss of generality, we can scale M by a positive scalar so that 1 ∈ conv(rows(M)).
Let M be a slack matrix of a polytope R with dim(R) = d. By Theorem 14,

rank(M) = d + 1. Since the convex hull of the rows of M is isomorphic to R,
we have that the affine hull of the rows of M has dimension d. Let J denote the
all-ones matrix of dimension p × q. Since 1 is contained in the affine hull of the
rows of M , we have that the affine hull of the rows of M − J passes through the
origin and has dimension d. Hence, rank(M − J) = d. This implies that we can
write M − J = AB with A ∈ Rp×d and B ∈ Rd×q.

Let A′ = (1, A) and let B′ =
(1, BT

)T
. Then M = A′B′ is a rank factorization

of M . Let P := conv(rows(A)) and Q := {x ∈ Rd : 1+ xTB ≥ O}. Then the rows
of A′ form a V-representation of P h and the columns of B′ form a H-representation
for Qh = {(x0, x) ∈ Rd+1 : 1x0 + xTB ≥ O}. By Lemma 5, P h = Qh which
implies that P = Q. Therefore, M is a slack matrix of P and MT is a slack matrix
of P ◦. �

3. An Algorithm to Recognize Slack Matrices

In this section, we discuss the algorithmic problem of deciding whether a given
nonnegative matrix has the RCGC (or, equivalently, the CCGC). According to
Corollaries 4 and 7 this is the crucial step to be performed in order to decide
whether a given matrix is a slack matrix of a cone or a polytope.

We start with a promising result:

Theorem 19. The problem to decide whether a nonnegative matrix satisfies the
RCGC (or the CCGC) is in coNP. In particular, the same holds for checking the
property of being a slack matrix (of a cone or of a polytope).

Proof. If the given matrix M ∈ R
p×q
+ does not satisfy the RCGC, then there is some

point x ∈ Rp ·M ∩ R
q
+ \ Rp

+ · M (which can be chosen to have coordinates whose
encoding lengths are bounded polynomially in the encoding length of M). The fact
that x 6∈ R

p
+ ·M can be certified by the help of some separating hyperplane whose

normal vector can be chosen to have coordinates with encoding length bounded
polynomially in the encoding length of M as well. �

Next, we are going to describe an algorithm to check the CCGC (equivalently,
the RCGC) for a nonnegative matrix. By Corollary 4, this algorithm will then
provide a method to check if a given nonnegative matrix is a slack matrix of a cone.
To check if the matrix is the slack matrix of a polytope (see Corollary 7), we can
add the additional step of checking if the all-ones vector is in the column span of
the matrix which is doable in polynomial time. A SAGE worksheet implementing
this code can be found at http://www.math.washington.edu/∼rzr.

Algorithm to check if a nonnegative matrix has the CCGC

9
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Input: A matrix M ∈ R
p×q
+ .

Output: True if M has the CCGC and False otherwise.

(1) Compute a basis L for the left kernel of M . For each vector ℓ in L, generate
the equation ℓTx = 0.

(2) Generate an H-representation of the cone K with the equations from the
previous step and the inequalities x1 ≥ 0, . . . , xp ≥ 0.

(3) Compute a minimal V-representation of K.
(4) Normalize the vectors in the V-representation and the columns of M .
(5) Check that each normalized vector in the V-representation is a normalized

column of M . If so, return True. If not, return False.

Proof. We have K = M ·Rq ∩R
p
+ and M ·Rq

+ ⊆ K due to the nonnegativity of M .
Thus, M satisfies the CCGC if and only if K ⊆ M · Rq

+ holds, which is what the
algorithm checks in the last three steps (note that all cones involved are pointed
because they are contained in R

p
+). �

The only computationally challenging part of the algorithm is converting from
the H-representation of K to a V-representation. There are several algorithms to
do this, and we refer to [6], [9], and [11] for information on the different techniques.
No polynomial time algorithm for this conversion exists, since the V-representation
may have size exponential in that of the H-representation. If the dimension of
the cone is fixed, however, then there do exist polynomial time algorithms for the
conversion [3]. Thus, we obtain the following complexity results.

Theorem 20. For fixed r, checking whether a rank r matrix satisfies the RCGC
(CCGC) can be done in polynomial time. In particular, checking whether matrices
of fixed rank are slack matrices of cones or polytopes can be done in polynomial
time.

Given an H-polyhedron P and a V-polytope Q contained in P , the problem
of deciding whether P = Q is known as the polyhedral verification problem. The
complexity of this problem is unknown [13]. However, a polynomial time algorithm
for the polyhedral verification problem would yield an output sensitive algorithm
for the problem of computing the facets of a polytope given in V-representation,
and thus solve a decades old open problem in computational geometry (see [7]).

Clearly, given a V-polytope it is easy to check whether it is contained in an
H-polyhedron. The reverse problem of checking whether an H-polyhedron is con-
tained in a V-polytope is known to be coNP-complete [4]. Note that the polyhedral
verification problem is the restriction of the latter problem to those instances in
which the V-polytope is contained in the H-polyhedron (see also
http://www.inf.ethz.ch/personal/fukudak/polyfaq/node21.html, [8] and [12]).

Theorem 21. The following problems can be reduced in polynomial time to each
other:

(1) The polyhedral verification problem
(2) Is a given matrix a slack matrix of a polytope?
(3) Is a given matrix a slack matrix of a cone?
(4) Does a given matrix satisfy the RCGC/CCGC?

Proof. Corollary 7 shows that (2) can be reduced (in polynomial time) to (4) (since
checking whether 1 is contained in the column space can be done in polynomial
time) and Corollary 4 shows that (4) can be reduced to (3).
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We can also reduce (3) to (2): Suppose we need to check whether a given ma-
trix M is a slack matrix of a cone. By Lemma 11, we can assume that M has no
zero rows. We can also scale the rows of M by positive scalars without effect on M
being a slack matrix of a cone. Using these two facts, we can assume that 1 is in
the column span of M . Then, being a slack matrix of a cone is equivalent to being
a slack matrix of a polytope due to Theorem 6.

Since Corollary 8 shows how to reduce (2) to (1), it thus remains to establish a
reduction of (1) to (2). Let Q = conv(rows(V )) with V ∈ Rp×n and P = {x ∈ Rn :
Wx ≤ w} with W ∈ Rq×n and w ∈ Rq with Q ⊆ P . Suppose we need to decide
whether P = Q. First, we check whether P is pointed (i.e., W has a trivial right
kernel) and dim(P ) = dim(Q) (both checks can be done in polynomial time, the
second one using linear programming). If either check fails, then P 6= Q.

So let us assume dim(P ) = dim(Q) and that P is pointed. The latter fact implies
that the affine map ϕ : Rn → Rq defined via ϕ(x) = w −Wx is injective. Let M
be the matrix arising from V by applying ϕ to each row. Then, due to Q ⊆ P ,
we have that M is nonnegative. According to Corollary 8, the matrix M is a slack
matrix of a polytope if and only if

(9) conv(rows(M)) = aff(rows(M)) ∩ R
q
+.

Since we have

conv(rows(M)) = ϕ(conv(rows(V ))) = ϕ(Q)

and

aff(rows(M)) ∩ R
q
+ = ϕ(aff(rows(V ))) ∩ R

q
+ = ϕ(aff(Q)) ∩R

q
+

= ϕ({x ∈ aff(Q) : ϕ(x) ≥ O}) = ϕ(P ∩ aff(Q)) = ϕ(P )

(here we used that dim(P ) = dim(Q)), condition (9) is equivalent to ϕ(P ) = ϕ(Q).
In turn, this is equivalent to P = Q since ϕ is injective. Thus, P = Q is equivalent
to M being the slack matrix of a polytope. �

4. A Combinatorial Characterization of Slack Matrices

Our second characterization of slack matrices of cones and polytopes relies on
incidence structures. For a (nonnegative) matrix M , we denote by Minc the 0/1-
matrix with (Minc)ij = 1 if and only if Mij = 0. The matrices Minc arising from
slack matrices M of a polyhedral cone K or of a polytope P are called the incidence
matrices of K or P , respectively.

We start by characterizing the slack matrices of polytopes, since the correspond-
ing statement for cones can easily be deduced from the one for polytopes. The
characterization is restricted to nonnegative matrices of rank at least two. It is
easy to see that no matrix of rank one is a slack matrix of a nontrivial polytope.
One may (or may not) want to consider a rank-zero matrix as a slack matrix of the
polytope consisting of the zero-vector in R0.

Theorem 22. A nonnegative matrix M with rank(M) ≥ 2 is a slack matrix of
some polytope if and only if Minc is an incidence matrix of some (rank(M) − 1)-
dimensional polytope and 1 is contained in the column span of M .

Proof. If M is a slack matrix of a polytope P , then 1 is contained in the column
span of M (Theorem 6), and by Theorem 14, dim(P ) = rank(M)− 1.

11
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In order to establish the non-trivial implication of the claim, let M ∈ R
p×q
+ be a

nonnegative matrix with rank(M) = d+ 1 ≥ 2, 1 ∈ M · Rq and Minc an incidence
matrix of some d-dimensional polytope R. Denote by V ⊆ R

q
+ the set of rows

of M and define the polytope P := conv(V ) and the polyhedron Q := aff(V )∩R
q
+.

Clearly, P ⊆ Q, and since 1 ∈ M · Rq, dim(Q) = dim(P ) = d. By Corollary 8, in
order to show that M is a slack matrix of a polytope, it suffices to prove P = Q.

In order to establish Q ⊆ P , let us define

Vi = {v ∈ V : vi = 0} and Fi = conv(Vi) for 1 ≤ i ≤ q .

The set

F =

q⋃

i=1

Fi

is contained in the relative boundary ∂Q of Q. Note that as an incidence matrix of
some polytope of dimension at least one, Minc does not have an all-ones column.
Since Q = conv(∂Q) (note that Q is a pointed polyhedron of dimension d ≥ 2,
which is important here in case of Q being unbounded), if we show that F = ∂Q,
then we will have that Q = conv(F ) ⊆ P .

Thus, our goal is to establish F = ∂Q. As mentioned above, we have F ⊆ ∂Q.
It suffices to show that F is homotopy-equivalent to a (d− 1)-dimensional sphere1,
because then F cannot be properly contained in the (d− 1)-dimensional connected
(recall dim(Q) ≥ 2) manifold ∂Q. This follows, e.g., from [2, Cor. 8.5] together
with the fact that the (d− 1)-st cohomology group of a (d− 1)-dimensional sphere
is non-trivial.

To show that F is homotopy-equivalent to a (d− 1)-dimensional sphere, observe
that for every subset I ⊆ {1, . . . , q}, we have ∩i∈IFi 6= ∅ if and only if the submatrix
of Minc formed by the columns indexed by I has an all-ones row. Now let R be a
polytope of which Minc is an incidence matrix. Let G1, . . . , Gq be the faces of R
that correspond to the columns of Minc. Then ∩i∈IGi 6= ∅ holds if and only if the
submatrix of Minc formed by the columns indexed by I has an all-ones row.

Therefore, the abstract simplicial complexes

{I ⊆ {1, . . . , q} :
⋂

i∈I

Fi 6= ∅}, and {I ⊆ {1, . . . , q} :
⋂

i∈I

Gi 6= ∅}

(known as the nerves of the polyhedral complexes induced by F1, . . . , Fq and by
G1, . . . , Gq, respectively) are identical. Since all intersections

⋂
i∈I Fi and

⋂
i∈I Gi

are contractible (in fact, they are even convex), this simplicial complex is homotopy
equivalent to both F and to the (d − 1)-dimensional (polyhedral) sphere ∂R (see,
e.g., [1, Thm. 10.6]). �

Since polygons have a very simple combinatorial structure, Theorem 22 readily
yields a simple characterization of their slack-matrices. Here, a vertex-facet slack
matrix of a polytope P is a slack matrix of P whose rows and columns are in
one-to-one correspondence with the vertices and facets of P , respectively.

Corollary 23. A matrix M ∈ R
n×n
+ (n ≥ 3) is a vertex-facet slack matrix of an

n-gon if and only if its rows span an affine space of dimension exactly two and its
rows and columns can be permuted such that the non-zero entries appear exactly at
the positions (i, i) (for 1 ≤ i ≤ n), and (i, i− 1) (for 2 ≤ i ≤ n), and (1, n).

1Our proof of this is inspired by [7].
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Steinitz’ theorem [14] says that a graphG is the 1-skeleton of a three-dimensional
polytope if and only if G is planar and three-connected. Using this, one can check
in polynomial time whether a given 0/1-matrix is an incidence matrix of a three-
dimensional polytope. For every fixed d ≥ 4, however, it is NP-hard to decide
whether a given 0/1-matrix is an incidence matrix of a d-dimensional polytope [10].

In the following combinatorial characterization of slack matrices of cones we
restrict our attention to matrices of rank at least two as for polytopes. Clearly,
every nonnegative matrix of rank one is a slack matrix of the ray R1

+, and, we may
consider a matrix of rank zero as a slack matrix of the trivial cone {0} in R0.

Theorem 24. A nonnegative matrix M with rank(M) ≥ 2 is a slack matrix of
a polyhedral cone if and only if Minc is an incidence matrix of some rank(M)-
dimensional pointed polyhedral cone.

Proof. If M is a slack matrix of some polyhedral cone then, by Lemma 10, M is
a slack matrix (and hence Minc is an incidence matrix) of a pointed polyhedral
cone K. By Lemma 13 this cone has dimension rank(M).

In order to prove the reverse implication, we can assume by the results in Section
2.3 that M does not have any zero-row. Since M is also nonnegative, there exists
a positive diagonal matrix D such that DM contains 1 in its column span.

Given a pointed cone K, we can slice K by an affine hyperplane L such that the
slice is a polytope of dimension dim(K)− 1 and the incidence structures of K and
K ∩ L are identical. Thus, (DM)inc is an incidence matrix of some (rank(M) −
1)-dimensional polytope. By Theorem 22, we have that DM is a slack matrix
of a polytope. Hence, M is a slack matrix of the homogenization cone of this
polytope. �

Note that dropping pointed from the formulation of Theorem 24 makes the state-
ment false. Indeed,

M =




1 2
2 1
0 0
0 0


 with Minc =




0 0
0 0
1 1
1 1




and rank(M) = 2 is not a slack matrix (since M does not satisfy the RCGC),
but Minc is the incidence matrix of the non-pointed cone {(x1, x2) : x2 ≥ 0} with
V-representation (0, 1), (0, 1), (1, 0), (−1, 0) and H-representation (0, 1), (0, 1).
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