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Throughout, £, u, r, s will denote integer points satisfying £ < r < uand ¢ < s < u, thatis r and s are within [£, u]. A
point x € Z" is lexicographically smaller thany € Z", denoted by x < y, if x = y or the first nonzero coordinate of y — x is
r<s

positive. We write x < y if x < y and x # y. The lexicographical polytope P, is the convex hull of the integer points within
[€, u] that are lexicographically between r and s:

P =conv{xeZ": L <x<ur=<x<sh

The top-lexicographical polytope sz = convf{x € Z" : £ < x < u,x < s}is the special case when r = ¢. Similarly, the
bottom-lexicographical polytope is Pﬁu =convf{xeZ": £ <x<u,r=< x}

Givena,u € RY and b € Ry, the knapsack polytope defined by KL“”’ = conv{x € Z" : 0 < x < u,ax < b}is
superdecreasing if:

Za,-u,-fak fork=1,...,n. (1)
i>k
Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1
case, thatis when £ = 0 and u = 1, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases
of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3]
generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.
To prove this last statement, Gupte [3] observes that a superdecreasing knapsack Kl‘}*b is the top-lexicographical polytope
P(fj‘, where s the lexicographically greatest integer point of KL‘}”’ .The non trivial inclusion actually holds because every integer

point x of P;fl satisfies ax < as. Indeed, by definition, if x < s, there exists k € {1, ...,n} suchthatx, + 1 < sy and x; = s;
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Fig. 1. Path representation of the points of X[i

fori < k. Hence, we have b — ax > as — ax > Zbk ai(si — x;) + ax > Y., ai(si — x; + u;) > 0, because of (1), s; > 0 and
Ui = Xj.

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let Pffl be a top-
lexicographical polytope for some s within [¢, u]. Possibly after translating, we may assume ¢ = 0. Define a by q, =
D ipaiui+ 1,fork = 1,...,n,and let b = as. Since the associated knapsack polytope Kf,"b is superdecreasing, if x < s
then ax < as = b, for all x within [0, u]. Moreover, the converse holds because, inequalities (1) being all strict, s < x implies
b = as < ax. Therefore, Py, = K. These observations are summarized in the following.

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer
variables (e.g, [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the
0/1 case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical
point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [ 1] independently showed that intersecting a 0/1 top-
with a 0/1 bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently,
these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach
provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex
hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly
straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical
polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical
polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, X;Z will denote the set of the points p' = (1, ..., Si_1, S — 1, Ujy1, ..., Uy), fori = 1,..., n+ 1such that

s; > £;, where p"*! = s by definition. Note that X, consists of the componentwise max1mal integer pomts of P}, to which
we added, for later convenience, the point p" = (sl, ey Sne1,Sp — D ifs, > £,

1.1. A flow model for X}
We first model the points of X as paths from 1to n + 1 in the digraph given in Fig. 1.

Our digraph is composed of n + 1 layers, each containing two nodes except the first and the last ones. There are three arcs
connecting the layer k to the layer k + 1, an upper arc yy, a diagonal arc t, and a lower arc z. The only exception concerns
the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of x € X.5,. More precisely, given a directed path P
from 1 to n 4+ 1, we define the point x by setting, for k = 1, n,

Uy ifykeP,
Xe=1{sxk—1 ift, eP,
Sk ikaGP.

As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of
conv(X;5):

X = uiy; + (s; — Dt; + siz; fori=1,...,n, (2)
y1=0 (3)

Vi =Yi—1+ ti_1 fori=2,...,n (4)

Zi = Ziy1 + tipq fori=1,...,n—1, (5)

ti=0 whenever s; = ¢;, (6)

Ynttht+zn=1 (7)

Vi, ti,zi >0 fori=1,...,n. (8)
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Observation 2. conv( )_ proj {(x, y, z, t) satisfying (2)-(8)}.

Proof. First, note that there is a one-to-one correspondence between the points of X,fi and the paths from layer 1 to

layer n 4+ 1 of the digraph. This implies that X;f, is the projection onto the x variables of the integer points of Q =
{(x,y, z, t) satisfying (2)-(8)}. The digraph being acyclic, the set of (y, z, t) satisfying (3)-(8) is a path polytope and thus
is an integral polytope [7, Theorem 13.10]. The integrality of u and s implies that Q is integer, hence so is its projection onto
the x variables, which concludes the proof. O

1.2. Description of conv(X;";)
In the following result, we use Observation 2 to provide a linear description of conv(X;;).

Lemma 3. conv(X;",) is described by the inequalities:

n

> A = -1 €C)
i=1,s;>¢;
Ax) <0 fork=1,...,n, (10)
A(x) >0 when s, = £y, (11)
where, fork =1,...,n,

k—1

k=1
A(X) == (xx — s) + (ug — Sp) Z l_[ Wj—si+1) | (xi —sp).

i=1,5;>¢; \j=it+1,5;>¢;

Proof. By Observation 2, it suffices to project onto the x variables of the set of x, y, t, z satisfying (2)-(8).
Fork = 1,...,n, we gety, = Z:‘: t; by (3) and (4). This, combined with (5) and (7), yields z, = 1 — fozl t;. Using
those two equations in (2), and t, = 0 whenever s, = £}, we obtain

k—1
te = Sk — Xk + (U — Sk) Z tj, fork=1,...,n. (12)
i=1,s5;>¢;
We now show by induction on k that, forallk =1, ...,n,
k k k
Yooti= > G- [ @5+ (13)
i=1,s;>¢; i=1,s;>¢; J=it1s5> ¢

By definition of £, (13) holds for k = 1. Let us suppose that (13) holds for k < n and show that it holds for k 4 1. The result
is immediate if 5,1 = €411, hence assume that ;1 > £;+1. We have

k+1 k k
Z ti = (Skr1 — Xper1) + (U1 — Sk1) Z ti + Z ti (14)
i=1,s5;>¢; i=1,s;>¢; i=1,5;>¢;
k k
= (k1 —Xe) + W =S+ Y Gi—x) [ @-s5+1) (15)
i=1,5;>¢; J=it1,s5> ¢
k+1 k+1
= > G-x ] @-s+0.
i=1,5;>¢; J=it1,s> ¢

Above, equality (14) follows from (12) applied to ¢, and equality (15) follows using (13).
Injecting (13) in (12) yields

k=1 k=1
ty = Sk — Xk + (Uk — Sk) Z (si — xi) l_[ uj—sj+1) fork=1,...,n (16)
i=1,5;>¢; j=it1,s5>¢;

Up to now, we only used linear transformations, thus projecting out the variables y, z gives us (16), Zl Lsi=t;
whenever s, = £, and t; > 0 otherwise. Then, projecting onto the x variable gives the desired result. O

ti<1t=0

Please cite this article in press as: M. Barbato, etal, Lexicographical polytopes, Discrete Applied Mathematics (2017),
http://dx.doi.org/10.1016/j.dam.2017.04.022




4 M. Barbato et al. / Discrete Applied Mathematics 1 (11E1) IR1-1EE

Note that the following derives from the above proof by combining (12) and the fact that, by (16), we have t, = —A:

k—1
A = =50+ e —s) Y A, fork=1,....n. (17)

i=1,s;>¢;

2. Lexicographical polytopes

In this section, we first provide the description of top-lexicographical polytopes. We then show that a lexicographical
polytope is the intersection of its top- and bottom-lexicographical polytopes.

2.1. Description of top-lexicographical polytopes

The following observation unveils the polyhedral relation between a top-lexicographical polytope and the convex hull
of its componentwise maximal points.

Observation 4. P, = (conv(X;;) +R") N {x > ¢}.

Proof. Since conv(XZf,) is integer and contained in {x > ¢}, the polyhedron on the right is integer. Seen the definitions, the
observation follows. O

Remark that, when ¢ = 0, P;Z is precisely the submissive of conv(XZZ). Now, we derive from Lemma 3 and Observation 4

the linear description of top-lexicographical polytopes.

Theorem 5. P;Z ={xeR":{<x<uA®X) <0, fork=1,...,n}L
Proof. Theorem 5 immediately follows from Observation 4 and the following description of conv(XZZ) + R,

conv(X;;) +RY = {x e R":x <uandAi(x) <0, fork=1,...,n}. (18)

<s

To prove (18), denote by Q its right hand side. By Lemma 3, the above inequalities are valid for conv(X;,). Since their
coefficients for x are nonnegative, they also hold for conv(XZfl) + R". Note that the latter and Q have the same recession
cone, thus it remains to show that the vertices of Q are vertices of conv(X;;,). Let us prove it by induction on the dimension,
the base case being immediate. We may assume that u,, > s,, as otherwise A,(x) = x, — s, and the induction concludes. Let
X be a vertex of Q.

Claim6. > Ai(®) > —1.

n

i=1,s;>¢;
Proof. The indices i of A;(x) involved in sums throughout this proof satisfy s; > ¢;, yet to ease the reading, we will omit the
subscripts “s; > ¢;”. By contradiction, assume that Z?:1 Ai(x) < —1. Since x is a vertex, and x, appears only in x, < u, and
An(x) < 0, at least one of them holds with equality. If the latter does, then by (17) and u, > s,, we get the contradiction
0=A% < (U —sp))(1+A(X) + ---Ap_1(X)) < (uy — sp)(1 — 1) = 0. Therefore A,(X) < 0 and x, = u,. Forx € R",

we denote X' := (x1, ..., x,_1). Necessarily, X’ satisfies to equality n — 1 linearly independent of the remaining inequalities,
and hence X’ is a vertex of {x € R""! : x; < u, Ax(x) <0, fork =1, ...,n— 1}. By the induction hypothesis, X' is a vertex
of conv(X,”,) + R"™! hence Z?;ll Ai(X) > —1.Butnow A,(X) < 0,X, = u, and (17)imply Ay (X) + - - - + A1 (X)) < —1,

a contradiction. W

Let us show that Ax(x) = 0 whenever s, = ¢;. Indeed, in this case, x; only appears in Ay(x) < 0 and X, < uy, and

one is satisfied with equality since x is a vertex. If x, = uy, then by (17), Claim 6 and A;(x) < 0,fori = 1...,n, we get
0> Ar(x) = (ug — sp)(1 + Zi‘(;ll,s,-%,- Ai(x)) > 0. Consequently, x belongs to conv(X;fZ) and this proves (18). O

Symmetrically, bottom-lexicographical polytopes are described as follows.

Corollary 7. Pfu ={XxeR": L <x<uBx) <0, fork=1,...,n}, where, fork=1,...,n,

k—1 k—1

Bu®) = (ne—x) + (e — ) Y [T G-4+D|E—x.

i=1r<u; \j=it+1r<y;
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2.2. Lexicographical polytopes

By definition, we have P’ C P,5 N P;;. It turns out that the converse holds, see Theorem 8. In particular, Py}, N P, is
an integer polytope.

Theorem 8. A lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

Proof. It remains to prove that P;3’ 2 Q, where Q = P;; N P;;. Let us prove it by induction on the dimension, the one-
dimensional case being immediate.

If r; = sq, then the problem reduces to the (n — 1)-dimensional case, and using induction concludes.

Ifri +1 < m < s; — 1 for some integer x, then let ¢’ be obtained from ¢ by replacing £; by . By s; > ¢} and the

<s

definition of A, (x), applying Theorem 5 gives sz N{x; >n}=P - Moreover, since m > ry, the latter is contained in Pﬁ,
ThereforeQ N {x; >} = P;su is integer. Similarly, Q N {x; < &} is integer, hence so is Q, and we are done.
The remaining case is when r; = s; — 1. Letx € Py, N P;. If X; = s1, when X is written as a convex combination of

integer points of P;"} , all of them have their first coordinate equal to s;, and hence belong to P; 7. By convexity, so does X and

we are done. A similar argument may be applied if x; = ry. Therefore, we may assume thatr; < X; < si.
Let A = X; — ry, and define y by y; = s; and y, = uy + ® for k = 2,..., n. Similarly, define z by z; = r; and

zi =4 + ’_‘]":ii, fori = 2, ..., n. The following claim finishes the proof, where, given two points v and w of R", max(v, w)
(resp. min(v, w)) will denote the point of R" whose ith coordinate is max{v;, w;} (resp. min{v;, w;}) fori=1,...,n.

Claim 9. X is a convex combination of y = max(y, £) and Z = min(z, u) which both belong to P;7;.

<s

Proof. First, let us show thaty € conv(X, ) + R".Asx < u,we have y < u. Moreover, A;(y) = y; — s; = 0. Now, we
prove by induction that Ay (y) = %Ak(?c) fork = 2,...,n. Using (17), A;(y) = 0, the definition of y;, and the induction
hypothesis, we have A, (y) = %[)’(k — s+ (A — D(ue — sk) + (U — si) Zf'{:_;-,slﬂi Ai(x)].Since A — 1 = x; — 51 = A1(X)
ands; =r; + 1 > £, we get by (17) that A (y) = %Ak()'c), fork = 2, ..., n.Since Ay(x) < 0, we have A,(y) < 0. Hence,
y € conv(X;;) + R". Therefore, there exists y* of conv(X;;) with y* > y. Clearly, y* > ¢ hence y* > max(y, ¢). Thus,
max(y, £) belongs to conv(X;;) + R" and, by Observation 4, to P;. Moreover, as its first coordinate equals s;, max(y, £)
belongs to P,/ Similarly, min(z, u) also belongs to P, 7.

Finally, we have (1 — M)zy + Ay; = (1 — A)(s1 — 1) +Asy = s — 14+ A = xy. Fori € {2,...,n}, we have
(1—)»)2i+)»}_1i = min()?,-—ui, (1—)»)u,-)+max(()»—1)u,-+>'<,-, M) = )'q—max(MZ,-, (A—1)ui+2i)+max((k—])ui+5ci, M) = }_(,'.
Therefore,x = (1 — A)z + Ay and we aredone. B [

Note that the above result implies that the family of lexicographical polytopes defined on a fixed box [¢, u] is closed by
intersection. Beside, combined with Theorem 5 and Corollary 7, it provides the description of lexicographical polytopes.

Corollary 10. The lexicographical polytope P, is described as follows:

XeR": A(x) <0 fork=1,...,n

Py = Bi(x) <0 fork=1,....n
' L<x<u
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