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Augmenting the edge-connectivity of a hypergraph

by adding a multipartite graph

Attila Bernáth?, Roland Grappe??, and Zoltán Szigeti? ? ?

Abstract

Given a hypergraph, a partition of its vertex set and an integer k, find a
minimum number of graph edges to be added between different members of the
partition in order to make the hypergraph k-edge-connected. This problem is
a common generalization of the following two problems: edge-connectivity aug-
mentation of graphs with partition constraints (J. Bang-Jensen, H. Gabow, T.
Jordán, Z. Szigeti, Edge-connectivity augmentation with partition constraints,
SIAM J. Discrete Math. Vol. 12, No. 2 (1999) 160-207) and edge-connectivity
augmentation of hypergraphs by adding graph edges (J. Bang-Jensen, B. Jack-
son, Augmenting hypergraphs by edges of size two, Math. Program. Vol. 84,
No. 3 (1999) 467-481). We give a min-max theorem for this problem, that
implies the corresponding results on the above mentioned problems, and our
proof yields a polynomial algorithm to find the desired set of edges.

1 Introduction

Since Watanabe and Nakamura [6] solved the problem of edge-connectivity augmen-
tation of a graph, that is given a graph and an integer k find a minimum set of edges
whose addition makes the graph k-edge-connected, many generalizations have been
studied. For a survey, we refer to [5].

An important breakthrough in the area of connectivity augmentation came with
Frank’s algorithm [4]. It led to an efficient approach to this kind of problems. It
consists of the following two steps. First, add a special vertex s to the starting graph,
and a minimum set of edges between s and the graph in order to satisfy the desired
connectivity property. Second, apply the technique of splitting off, that is replace
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two edges incident to s by an edge between the corresponding vertices of the original
graph if the desired connectivity property remains valid. Repeat this operation in
order to get rid of the edges incident to s and finally delete the isolated vertex s. The
set of new edges obtained provides an optimal solution of the problem.

In [2], the authors are given not only a graph and an integer k, but also a partition
of the vertex set and they ask for the new edges, whose addition results in a k-edge-
connected graph, to connect distinct members of this partition. We may see that
it contains the first problem by chosing the partition composed of singletons. They
efficiently solve it, and show that the natural lower bound max{α, β} is almost always
the correct answer. They also characterize graphs that fail the lower bound and show
that one more edge is sufficient for them. The definition of α, β and that of the
configurations are given in Section 3.

Theorem 1.1 (Bang-Jensen, Gabow, Jordán, Szigeti [2]). Let G = (V,E) be a graph,
P a partition of V and k ≥ 2. Then the minimum number of edges connecting
distinct members of P to be added to G in order to make it k-edge-connected is equal
to max{α, β} unless G contains a C4- or C6-configuration, in which case it is equal
to max{α, β}+ 1.

Another possible generalization is to study the problem for hypergraphs. Bang-
Jensen and Jackson solved the problem of making a hypergraph k-edge-connected
by adding a minimum number of graph edges in [1]. Namely, they showed that the
natural lower bound max{α, ω(H)} (see the definitions in Sections 3) can always be
achieved.

Theorem 1.2 (Bang-Jensen, Jackson [1]). Let H = (V, E) be a hypergraph and k an
integer. Then the minimum number of graph edges to be added to H in order to make
it k-edge-connected is max{α, ω(H)}.

In the present paper, we provide a common generalization of these two theorems.
More precisely, we give an algorithmic proof for a min-max theorem solving the fol-
lowing. Given a hypergraph H, a partition P of its vertex set and an integer k, find
a minimum set of graph edges between different members of P to be added to H in
order to make it k-edge-connected. We emphasize that in his thesis [3] Cosh solved
the special case when P is a bipartition.

The outline of the paper is as follows. In Section 2 we recall basic definitions and
state some useful facts. In Section 3 we provide the lower bound for our problem and
we give a complete description of the hypergraphs failing the lower bound. A useful
theorem about the number of splitting off one may choose is shown in Section 4.1,
which helps us to prove the splitting off theorem of Section 4.2. We solve the main
problem, and provide the augmentation theorem in Section 4.3. Finally we provide the
algorithmic details why the proof of our main theorem yields a strongly polynomial
algorithm.
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2 Preliminaries

2.1 Definitions

Let H = (V, E) be a hypergraph, where V is a finite set and E is a set of subsets of V ,
called hyperedges. A hyperedge of cardinality 2 is a graph edge. For a set X ⊆ V ,
let δH(X) be the set of hyperedges containing at least one vertex in X and at least
one in V −X . The cardinality of this set is called the degree of X and is denoted by
dH(X). When no confusion may arise we shall omit the subscript. Two sets X and
Y are crossing when none of X−Y, Y −X,X∩Y, V −(X∪Y ) is empty. For a family
M = {M1, . . . ,Ml} of subsets of V , let M?

0
=

⋂l

i=1Mi and M?

i
= Mi −

⋃
j 6=iMj .

For a partition {A1, . . . , Ak} of V and for i = 1, . . . , k, sets Ai and Ai+1 are called
consecutive, where Ak+1 = A1. We denote by X ⊂ V that X ⊆ V and X 6= V .
A hypergraph is k-edge-connected when d(X) ≥ k for all nonempty X ⊂ V . It is
well known that the degree function satisfies the following equality for any subsets X
and Y of V , where d0(X,Y ) (respectively d1(X, Y )) is the number of hyperedges
intersecting X−Y and Y −X and none (resp. exactly one) of X∩Y and V −(X∪Y ).
d(X,Y ) is the number of graph edges between X − Y and Y −X .

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d0(X, Y ) + d1(X, Y ). (1)

Let G = (V + s, E) be a hypergraph where s is incident only to graph edges. Let Γ(s)
denote the set of neighbors of s, that is the vertices of V that are adjacent to s. If a
set X ⊂ V contains a unique neighbor of s, then this neighbor will be denoted by x.
We say that G is k-edge-connected in V if, for any nonempty X ⊂ V, d(X) ≥ k.
In this section let G be such a hypergraph with d(s) > 0 even. Let su, sv be edges of
G. We denote G − su− sv+uv by Guv. Replacing G by Guv is called the splitting off
su, sv and uv is a split edge of Guv. A pair or a splitting off su, sv is admissible if
Guv is still k-edge-connected in V . We will also say that su is admissible with sv. For
a split edge uv of G, Guv will denote the hypergraph where we unsplit uv, that is we
undo the splitting off su, sv. For split edges e and f and edges su, sv of G, we will use
Ge,f and Ge

uv instead of (Ge)f and (Ge)uv. Suppose P̂ is a partition of δ(s) such that

|P̂ | ≤ d(s)
2

for all P̂ ∈ P̂. We call P̂ ∈ P̂ dominating if |P̂ | = d(s)
2
. The partition P̂

can be considered as a coloring of the edges incident to s. For an edge e incident to s,
c(e) denotes the color of e. A rainbow pair is an admissible pair su, sv of different
colors so that any dominating color class contains one of su and sv. A complete
rainbow splitting off is a sequence of rainbow splittings that decreases the degree
of s to zero. A set X ⊂ V is called tight if d(X) = k and dangerous if d(X) ≤ k+1.
For a set T ⊂ V , let G/T be the hypergraph obtained from G by contracting T .

2.2 Tight sets

Recall that G = (V + s, E) is a hypergraph that is k-edge-connected in V and s is
incident only to graph edges with d(s) > 0 is even.

The following claim can be proved by applying (1) for X and Y and for X and
V + s− Y .
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2.3 Dangerous sets 4

Claim 2.1. Let X, Y be tight sets in G. Then 1. if X ∩ Y 6= ∅ and X ∪ Y 6= V , then
they are tight, 2. if X − Y, Y −X 6= ∅, then they are tight and d(s,X ∩ Y ) = 0.

We may define, by Claim 2.1, for a vertex u ∈ Γ(s) that belongs to some tight sets,
Xu as the minimal tight set containing u. The hypergraph G can be modified without
destroying k-edge-connectivity in V as follows.

Claim 2.2. Let u ∈ Γ(s) and u′ ∈ Xu. Then G − su+ su′ is k-edge-connected in V.

Proof. Otherwise there exists a set Y of degree less than k in the new hypergraph.
Then Y contains u and but not u′ and it was tight in G. Thus Xu ∩ Y ⊂ Xu is tight
by Claim 2.1, a contradiction.

Claim 2.3. Let D ⊆ δG(s). Assume that each edge of D enters a tight set. Then
there exists a partition X of

⋃
su∈D Xu such that

∑
X∈X (k − dG−s(X)) ≥ |D|.

Proof. By Claim 2.1, {Xu : su ∈ D} form a laminar family. Let X be the maximal
sets of this family. Then X is a partition of

⋃
su∈D Xu and |D| ≤ dG(s,

⋃
su∈D Xu) =∑

X∈X dG(s,X) =
∑

X∈X (k − dG−s(X)).

Tight sets can be contracted without violating k-edge-connectivity in V, so, by the
following well known lemma, we will sometimes make the following assumption.

Every tight set is a singleton. (2)

Lemma 2.4. [1] For a tight set T of G, {su, sv} is admissible in G if and only if
{su, sv} is admissible in G/T .

2.3 Dangerous sets

We start this subsection by the characterization of admissible pairs, see [1]. In the light
of Lemma 2.5 it is natural to study the properties of dangerous sets. The following
technical lemmas will be applied throughout the paper.

Lemma 2.5. [1] A pair of edges su, sv is admissible in G if and only if no dangerous
set contains both u and v.

Claim 2.6. For a dangerous set Y , 1. d(s, Y ) ≤ d(s, V −Y ), and 2. if for a tight set
X, X ∩ Y 6= ∅ and X ∪ Y 6= V, then Y ∪X is dangerous.

Proof. By Y dangerous, d(V − Y ) ≥ k, and (1) applied to Y and s, we have 1 =
k + 1 − k ≥ d(Y ) − d(V − Y ) = 2d(s, Y ) − d(s), and then by d(s) is even, 2.6.1 is
satisfied. By (1) applied to X and Y and by d(X ∩ Y ) ≥ k, 2.6.2 is satisfied.

Note that Claim 2.6.2 implies that if Y is a maximal dangerous set and X a tight
set, then X and Y do not cross.

Claim 2.7. Let M := {M1,M2} be a family of maximal dangerous sets. If M?
i ∩

Γ(s) 6= ∅ for i = 0, 1, 2, then 1. M?
i is tight for i = 0, 1, 2, 2. d(s,M?

0 ) = 1, 3. there
exists F ⊆ E such that k−|F| is odd and F = δ(M?

1 )∩ δ(M?
2 ) = δ(M?

0 )∩ δ(V −M1−
M2).
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Section 3. Ingredients 5

Proof. Note that, by Claim 2.6.1, M1 ∪ M2 6= V. By maximality of M1, d(M1 ∪
M2) ≥ k + 2, then apply (1) to M1 and M2 and then to M1 and V + s −M2 to get
2.7.1, 2.7.2, d(M1) = k + 1, d0(M1,M2) = d1(M1,M2) = d1(M1, V − M2) = 0 and
d0(M1, V + s − M2) = 1. Thus δ(M?

1 ) ∩ δ(M?
2 ) = δ(M?

0 ) ∩ δ(V − M1 − M2). Let F
be this hyperedge set. By (1) applied to M?

0 and M?
1 , k + k = d(M?

0 ) + d(M?
1 ) =

d(M1) + 2d0(M
?
0 ,M

?
1 ) + d1(M

?
0 ,M

?
1 ) = k + 1+ 2d0(M

?
0 ,M

?
1 ) + |F|, so k − |F| is odd,

and 2.7.3 is proved.

Claim 2.8. Let M = {M1, . . . ,Ml} be a family of maximal dangerous sets with l ≥ 3.
If Γ(s)

⋂
M?

i 6= ∅ for i = 0, . . . , l, then for i = 0, . . . , l, 1. M?
i is tight, 2. d(s,M?

i ) = 1,
3. Mi = M?

i ∪M?
0 , 4. there exists a set F of k − 1 hyperedges of E intersecting every

M?
i , 5. d(M

?
j ∪M?

j′) = k + 1 for 1 ≤ j < j′ ≤ l.

Proof. By applying Claim 2.7 to two distinct pairs of sets in {M1,M2,M3}, by the
maximality of Mi and by the remark after Claim 2.6, we have 2.8.3, 2.8.4 and then
2.8.2 follows for i = 1, 2, 3. It is obvious that 2.8.5 is implied by 2.8.1-2.8.4. Repeat
the above argument to every triplet of M.

Corollary 2.9. If G has no admissible pair, then there exists a partition V1, . . . , Vl of
V and a hyperedge set F ⊆ E of cardinality k − 1 such that Vi is tight, dG(s, Vi) = 1
and δ(Vi) = F ∪ svi with some vi ∈ Vi for every i.

Proof. We assume that (2) holds. For t ∈ Γ(s), by Lemma 2.5, letMt = {M1, . . . ,Ml}
be a family of maximal dangerous sets containing t and covering Γ(s). By Claim
2.6.1, |Mt| ≥ 2, and then by Claim 2.7 applied to M1 and M2 in Mt, d(s, t) = 1
and Mi = {mi, t} for i = 1, 2. |Mx| = 2 for some x ∈ Γ(s) would imply d(s) = 3, a
contradiction, thus |Mt| ≥ 3. By Claim 2.8 applied to Mt, {Vi := M?

i : i = 0, . . . , l}
is a subpartition of V satisfying the corollary. It is in fact a partition because if
Z := V −

⋃
i Vi 6= ∅, then every hyperedge e ∈ δ(Z) belongs to some δ(Vi) and hence

to F , so we have k ≤ d(Z) ≤ |F| = k − 1, a contradiction.

3 Ingredients

In this section, H = (V, E) will be a hypergraph, P a partition of V and k an integer.
Let OPT (H,P, k) be the minimum number of desired edges in our augmentation
problem. First, we provide the natural lower bound for OPT (H,P, k) in subsection
3.1. Following Frank’s algorithm, we then describe in subsection 3.2 how to do an
optimal extension, that is how to add a new vertex s to H and a minimum number
of graph edges between s and V in order to satisfy the partition and connectivity
requirements. Afterwards, the aim is to split off rainbow pairs incident to s to get
rid of s. In subsection 3.3, we will characterize the hypergraphs for which this is
impossible. To do so we will introduce obstacles. Finally, we characterize in subsection
3.4 the hypergraphs for which the lower bound may not be achieved. We will introduce
configurations, the structures that force to have an obstacle in any optimal extension.
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3.1 Lower bound 6

3.1 Lower bound

Definition 3.1. Let Φ be the maximum of the following values.

α = max{d
1

2

∑

X∈X

(k − dH(X))e : X subpartition of V },

β = max{
∑

Y ∈Y

(k − dH(Y )) : Y subpartition of P, P ∈ P},

ω(H) = max{#component(H−F)− 1 : F ⊆ E , |F| = k − 1}.

Lemma 3.2. OPT (H,P, k) ≥ Φ.

Proof. The first value is a lower bound because at least k − d(X) new edges must
enter a set X ⊂ V with d(X) < k and a new edge may enter at most two sets of the
subpartition X . The second value arises as we may not add edges within a member
of P. The third value captures the fact that to make a graph G connected, we need
#component(G)− 1 edges. If we remove k − 1 hyperedges of H, we must add a tree
connecting the resulting connected components in order to make H k-edge-connected.
This argument shows that Φ is a lower bound for OPT (H,P, k).

3.2 Optimal extension

Given a hypergraph H = (V, E), a partition P of V and an integer k, we describe how
to extend H that is how to add a new vertex s to H and a minimum number of graph
edges between s and V in order to satisfy the partition and connectivity requirements.
We will also extend the partition P of V for a partition P̂ of the set of edges incident
to s in the extended graph. Considering the partition P̂ instead of the partition P
allows us to contract the tight sets.

Definition 3.3. An optimal extension of (H,P) is a pair (Ĥ, P̂) where Ĥ = (V +
s, E+ δĤ(s)) is a hypergraph and P̂ = {δĤ(s)∩ δĤ(P ) : P ∈ P} is a partition of δĤ(s)
such that

1. Ĥ is k-edge-connected in V ,

2. δĤ(s) consists of 2Φ graph edges,

3. |P̂ | ≤ 1
2
dĤ(s) for all P̂ ∈ P̂.

Theorem 3.4. There exists an optimal extension of (H,P).

Proof. We may find such an extension as follows. Recall that Xu is a minimal tight
set containing u.
1. Introduce a new vertex s.
2. Add a minimum set of graph edges F between s and V such that (V + s, E +F )

is k-edge-connected in V.
3. If d(s) is odd, add an arbitrary edge incident to s to make d(s) even. (Then

d(s) = 2α.)
4. Add some other edges incident to s if necessary so that d(s) = max{2α, 2ω(H)}.
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3.3 Obstacles 7

5. If some P ∈ P satisfies d(s, P ) > d(s)
2
, then proceed as follows.

(a) If there exists an edge su, u ∈ P such that Xu * P , then replace su by su′,
for some u′ ∈ Xu − P .

Note that the number of edges between s and P is decreased by 1. Repeat 5.
(b) Otherwise for all su, u ∈ P , we have Xu ⊆ P . Add 2d(s, P ) − d(s) edges

between s and V − P .
6. Stop. Let Ĥ be the resulting hypergraph and P̂ = {δĤ(s) ∩ δĤ(P ) : P ∈ P}.

By construction and by Claim 2.2, 3.3.1 and 3.3.3 are satisfied. Lemma 3.5 ensures
that 3.3.2 is satisfied and hence we have obtained an optimal extension of (H,P).

Lemma 3.5. dĤ(s) = 2Φ.

Proof. Let Gi be the hypergraph obtained after Step i. By Claim 2.3 applied to D =
δG2

(s), dG3
(s) ≤ 2α. By Lemma 3.2, we have equality. If we do not add edges in Step 5

then 2Φ ≤ dG5
(s) = max{2α, 2ω(H)} ≤ 2Φ. Otherwise we added 2dG5a

(s, P )− dG5a
(s)

edges so dĤ(s) = 2dG5a
(s, P ). Then, by Claim 2.3 applied to D = δG5a

(s) ∩ δG5a
(P ),

there exists a subpartition Y of P such that 2Φ ≥ 2
∑

Y ∈Y(k − dH(Y )) ≥ 2|D| =
2dG5a

(s, P ) = dĤ(s). Note that in this case, for some subpartition Y ′ of some P ′ ∈ P,
by 3.3.1 and 3.3.3, Φ = β =

∑
Y ∈Y ′(k − dH(Y )) ≤

∑
Y ∈Y ′ dĤ(s, Y ) ≤ dĤ(s, P ) =

|P̂ | ≤ 1
2
dĤ(s), and we have equality.

3.3 Obstacles

Let G = (V +s, E ′) be a hypergraph that is k-edge-connected in V, where s is incident

only to graph edges and dG(s) is even, and P̂ a partition of δG(s) such that |P̂ | ≤ dG(s)
2

for all P̂ ∈ P̂. Below we describe two structures when no complete rainbow splitting
off may be found.

Definition 3.6. A partition A = {A1, . . . , A4} of V is called a C4-obstacle of G if

1. dG(Ai) = k, for i = 1, . . . , 4,

2. there exists F ⊆ E ′ such that k − |F| 6= 1 is odd and F = δG(A1) ∩ δG(A3) =
δG(A2) ∩ δG(A4),

3. there exist l ∈ {1, 2} and a dominating P̂ ∈ P̂ such that δG(Al∪Al+2)∩δG(s) = P̂ .

A C4-obstacle is called simple if d(s, Ai) = 1 for i = 1, . . . , 4. The set Al ∪ Al+2 in
3.6.3 is called dominating.

Definition 3.7. A partition A = {A1, . . . , A6} of V is called a C6-obstacle of G if

1. dG(Ai) = k, dG(s, Ai) = 1, dG(Ai ∪ Ai+1) = k + 1 for i = 1, . . . , 6,

2. there exists F ⊆ E ′ so that k − |F| 6= 1 is odd and F = δG(Aj) ∩ δG(Al) for all
distinct non consecutive Aj and Al,

3. there exist three distinct classes P̂1, P̂2, P̂3 ∈ P̂ such that δG(Aj ∪Aj+3)∩δG(s) =

P̂j for j = 1, 2, 3.
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Figure 1: A C4-obstacle and a C6-obstacle

An obstacle is either a C4- or a C6-obstacle. An uncolored C4- (respectively
C6-) obstacle is a partition satisfying Definition 3.6.1-2 (resp. 3.7.1-2). Let A be an
obstacle of G. It is important to keep in mind that edges of the same color cannot enter
consecutive sets of A. We emphasize that 3.6.2 and 3.7.2 imply that the hyperedge
set of G is composed of the following hyperedges: the edges incident to s, the set F
of hyperedges intersecting every Ai, hyperedges intersecting only two consecutive sets
and no others, and hyperedges lying inside the sets Ai.

Claim 3.8. If A is an uncolored obstacle, then d(s, Ai) ≥ 1. Moreover, if A is a simple

uncolored C4-obstacle or an uncolored C6-obstacle, then d0(Ai, Ai+1) =
k−|F|−1

2
≥ 1 and

d(Ai ∪Ai+1) = k + 1 for all i.

Proof. For an uncolored C6-obstacle, (1) applied to Ai and Ai+1, and 3.7.1 imply
the claim. Let A be an uncolored C4-obstacle. (1) applied to Ai and Ai+1, 3.6.1
and 3.6.2 imply that d(Ai ∪ Ai+1) − k is odd and then, by k-edge-connectivity in V,

d(Ai∪Ai+1) ≥ k+1. It also follows that d0(Ai, Ai+1) ≤
k−|F|−1

2
. Then 0 = d(Ai)−k =

|F| + d(s, Ai) + d0(Ai, Ai+1) + d0(Ai, Ai−1) − k ≤ |F| + d(s, Ai) + 2k−|F|−1
2

− k =
d(s, Ai) − 1. Thus d(s, Ai) ≥ 1 and if d(s, Ai) = 1 then we have equality everywhere
and the claim follows by 3.6.2.

Claim 3.9. In an uncolored obstacle A, no dangerous set may intersect distinct non
consecutive sets Ai and Aj.

Proof. Suppose that a maximal dangerous set Y intersects non consecutive Ai and
Aj . We show that Ai ∪ Aj = Y . By Claim 2.6.2, Ai ∪ Aj ⊆ Y . If Y intersected
an other Ak, then by Claim 2.6.2, Ak ⊆ Y . Suppose that A is an uncolored C4-
obstacle. Then, by 3.6.3 and Claim 2.6.1, d(s)

2
< d(s, Y ) ≤ d(s)

2
, is a contradiction.

Now suppose that A is an uncolored C6-obstacle. Then, by Y is dangerous and by
Claim 3.8, k + 1 ≥ d(Y ) ≥ |F| + 2k−|F|−1

2
+ 3 = k + 2, is a contradiction. Thus

Ai ∪ Aj = Y . By Y is dangerous, (1) applied to Ai and Aj and by 3.6.1-2 or 3.7.1-2,
k + 1 ≥ d(Y ) = d(Ai) + d(Aj) − 2d0(Ai, Aj) − d1(Ai, Aj) = 2k − 0 − |F| ≥ k + 2, a
contradicton.
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3.4 Configurations 9

Claim 3.10. In an uncolored obstacle, Ai is a maximal tight set for all i.

Proof. Suppose that a maximal tight set X intersects Ai and Aj for some i < j. By
Claims 3.9 and 2.1, j = i+1 and X = Ai ∪Ai+1. Then by (1) applied to Ai and Ai+1

and by 3.6.1 or 3.7.1, k−|F| = 2d0(Ai, Ai+1) is even, contradicting 3.6.2 or 3.7.2.

Claim 3.11. If A = {A1, . . . , A6} is a C6-obstacle, then splitting off any rainbow pair
gives rise to a simple C4-obstacle.

Proof. By Claim 3.9 and Lemma 2.5, 3.7.1 and 3.7.3, the only rainbow pairs are
sai−1, sai+1 for all i. By (1) applied to Ai ∪ Ai−1 and Ai ∪ Ai+1, after splitting such
a pair, Ai−1 ∪ Ai ∪ Ai+1 is tight and {Ai−1 ∪ Ai ∪ Ai+1, Ai+2, Ai+3, Ai+4} is a C4-
obstacle.

Claim 3.12. If A = {A1, . . . , A4} is a C4-obstacle then there exists a rainbow splitting
off, unless A is simple.

Proof. We can assume that (2) holds and therefore Ai = ai by Claim 3.10 for every
i. Note that by 3.6.3, a rainbow pair can only be of form sai, sai+1 for some i. If
neither of sai, sai+1 and sai, sai−1 is admissible then {ai, ai+1} and {ai, ai−1} are both
maximal tight sets and, by Claim 2.7.2, d(s, ai) = 1. Applying this for every i we get
that A is simple.

Lemma 3.13. If G contains an obstacle, then there is no complete rainbow splitting
off, but there is a complete admissible splitting off.

Proof. By Claims 3.11 and 3.12, it is enough to note that if A is a C4-obstacle, then,
by 3.6.3, splitting off any rainbow pair gives rise to a C4-obstacle. Hence, by Claim
3.8, there is no complete rainbow splitting off in G. Since by Claim 3.9 there exists
an admissible splitting off in a simple C4-obstacle, we get the last statement of the
lemma.

Corollary 3.14. If G contains an obstacle then dG(s) ≥ 2ω(G − s).

3.4 Configurations

Given a hypergraph H = (V, E), a partition P of V and an integer k, we describe
the structures of H for which the lower bound may not be achieved and then in the
following lemma we make a link between configurations and obstacles.

Definition 3.15. A partition {A1, . . . , A4} of V is a C4-configuration of H if

1. k − dH(Ai) > 0 for i = 1, . . . , 4,

2. there exists F ⊆ E such that k − |F| is odd and F = δH(A1) ∩ δH(A3) =
δH(A2) ∩ δH(A4),

3. there exist l ∈ {1, 2}, P ∈ P and a subpartition Xj of Aj ∩ P such that∑
X∈Xj

(k − dH(X)) = k − dH(Aj) for
j = l, l + 2,

4. Φ = k − dH(A1) + k − dH(A3) = k − dH(A2) + k − dH(A4).
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Definition 3.16. A partition {A1, . . . , A6} of V is a C6-configuration of H if

1. k − dH(Ai) = 1, k − dH(Ai ∪Ai+1) = 1 for i = 1, . . . , 6,

2. there exists F ⊆ E such that k − |F| is odd and F = δH(Aj) ∩ δH(Al) for all
distinct non consecutive Aj and Al,

3. there exist A′
i ⊆ Ai and three distinct classes P1, P2, P3 ∈ P such that k −

dH(A
′
i) = 1 for i = 1, . . . , 6 and
A′

j ∪ A′
j+3 ⊆ Pj for j = 1, . . . , 3,

4. Φ = 3.

A configuration is either a C4- or a C6-configuration. We mention that specializing
these definitions to graphs we get the original definitions of C4- and C6-configurations
given in [2].

Lemma 3.17. Every optimal extension of (H,P) contains an obstacle if and only if
H contains a configuration.

Proof. (of sufficiency) We show that if A is a C4-configuration (respectively C6-con-
figuration) of H and (Ĥ, P̂) is an optimal extension of (H,P), then A is a C4-obstacle
(resp. C6-obstacle) of Ĥ. By 3.3.2, 3.15.4 (resp. 3.16.1 and 3.16.4) and 3.3.1, we have∑

i dĤ(s, Ai) = dĤ(s) = 2Φ =
∑

i(k − dH(Ai)) ≤
∑

i dĤ(s, Ai). Hence dĤ(s, Ai) =
k − dH(Ai) so dĤ(Ai) = k for all i, providing 3.6.1 (resp. the first part of 3.7.1. The
second part of 3.7.1 comes from 3.16.1 which implies dĤ(Ai∪Ai+1) = dH(Ai∪Ai+1)+
dĤ(s, Ai) + dĤ(s, Ai+1) = (k − 1) + 1 + 1 = k + 1). Note that k − |F| 6= 1 otherwise
1
2
|A| = Φ ≥ ω(H) ≥ #component(H−F)− 1 = |A| − 1 ≥ 1

2
|A|+ 1, a contradiction.

Hence 3.15.2 (resp. 3.16.2) implies 3.6.2 (resp. 3.7.2). By 3.15.3-4 (resp. 3.16.3-4),
the edges between s and Al ∪ Al+2 (resp. Aj ∪ Aj+3) are between s and Xl ∪ Xl+2

(resp. A′
j ∪ A′

j+3), hence between s and P (resp. Pj), implying 3.6.3 (resp. 3.7.3) by
3.3.3.

Proof. (of necessity) Suppose that (H,P) contains no configuration. By Theorem
3.4 there exists an optimal extension (Ĥ, P̂) of (H,P). Suppose that Ĥ contains a
C4-obstacle (respectively C6-obstacle) A. 3.6.1-2 (resp. 3.7.1-2) imply 3.15.1-2 (resp.
3.16.1-2). 3.3.2, 3.6.1 and 3.6.3 (resp. 3.7.1) imply 3.15.4 (resp. 3.16.4). Therefore,
since (H,P) contains no configuration, 3.15.3 (resp. 3.16.3) does not hold. That is,
by Claim 2.3, for any dominating P̂ ∈ P̂ (resp. there exists P̂ ∈ P̂) there exists
su ∈ P̂ such that Xu−P 6= ∅ and we may replace su by su′ with u′ ∈ Xu−P without
violating |P̂ ′| ≤ d(s)

2
for all P̂ ′ ∈ P̂ ′ and k-edge-connectivity in V by Claim 2.2. In

the new hypergraph Ĥ′, 3.6.3 (resp. 3.7.3) is not satisfied so A is not a C4-obstacle
(resp. C6-obstacle) anymore. Since Xu remains tight in Ĥ′ and by Claim 3.10, A is
a partition of V into maximal tight sets in Ĥ, it is also in Ĥ′. Thus no obstacle can
exist in (Ĥ′, P̂ ′) by Claim 3.10 and it is an optimal extension of (H,P).
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4 Main results

4.1 A new theorem on admissible pairs

In this section we generalize and refine Theorem 2.12(b) of [2] on admissible pairs. It
will help us to find a rainbow pair when no simple C4-obstacle exists but an admissible
pair exists. Note that the partition constraints are not considered in the following
theorem.

Theorem 4.1. Let G = (V +s, E) be a hypergraph that is k-edge-connected in V, where
s is incident only to graph edges and d(s) is even. Suppose there is an admissible pair

incident to s. Then either (i) there is an edge st that belongs to at least d(s)
2

distinct
admissible pairs or (ii) G contains a simple uncolored C4-obstacle.

Proof. For t ∈ Γ(s), let St ⊆ δ(s) be the set of edges admissible with st, and, by
Lemma 2.5, let Mt = {M1, . . . ,Ml} be a minimal family of maximal dangerous sets
such that t ∈ M∗

0 and δ(s)− St = δ(s) ∩ δ(
⋃l

i=1Mi). Suppose that (i) is not satisfied

that is (∗) |St| ≤
d(s)
2

− 1 for all t ∈ Γ(s). We may assume that (2) holds.

Claim 4.2. For all t ∈ Γ(s), |Mt| = 2, d(t) = k, d(s, t) = 1 and Mi = {t, ti} for all
Mi ∈ Mt with some ti ∈ Γ(s).

Proof. If for some t ∈ Γ(s), |Mt| = 1, then by Claim 2.6.1 and M1 is dangerous,
d(s)− |St| = d(s,M1) ≤ d(s, V −M1) = |St| that contradicts (∗). Thus |Mt| ≥ 2 for
all t ∈ Γ(s). Claim 2.7, applied to pairs of sets ofMt, and (2) implies thatMi = {ti, t}
for all i, d(t) = k and d(s, t) = 1. Suppose that for some t0 ∈ Γ(s), l = |Mt0| ≥ 3.
Then, by (2) and Claim 2.8, there is a set F of k − 1 hyperedges each containing ti
hence δ(ti) = F∪sti for all i = 0, 1 . . . , l. By Claim 2.8.5 and Lemma 2.5, Sti = St0 for
all i = 1, . . . , l. The existence of an admissible pair implies that there exists u ∈ St0 .
Since st0 ∈ Su, {st0, st1, . . . , stl} ⊆ Su. Then (∗) applied to u and t0 implies that
d(s)
2

− 1 ≥ |Su| ≥ l + 1 = d(s)− |St0 | ≥
d(s)
2

+ 1, contradiction.

By Claim 4.2 and (∗), for all t ∈ Γ(s), 3 = d(s,
⋃
Mt) ≥ d(s)

2
+ 1. Then, since

d(s) ≥ 3 is even, d(s) = |Γ(s)| = 4. Let Γ(s) = {a1, a2, a3, a4} so that Ma1 =
{{a1, a2}, {a1, a4}}. By the claim below, (ii) is satisfied and the theorem is proved.

Claim 4.3. A = {a1, a2, a3, a4} is a simple uncolored C4-obstacle.

Proof. By Claim 4.2 and Ma1 = {{a1, a2}, {a1, a4}}, Ma3 = {{a2, a3}, {a3, a4}}.
Since {a1, a2} is dangerous, so is V − {a1, a2} by d(s) = 4. By maximality, V −
{a1, a2} = {a3, a4} so V = {a1, a2, a3, a4}. Claim 4.2 implies 3.6.1. Claim 2.7.3 applied
to Ma1 provides 3.6.2, except k − |F| 6= 1. It also holds because, by (1), k + 2 ≤
d({a1, a3}) = d(a1) + d(a3)− 2d0(a1, a3)− d1(a1, a3) = k + k − 0− |F|.

Corollary 4.4. Let G = (V + s, E) be a hypergraph that is k-edge-connected in V,
where s is incident only to graph edges and d(s) is even, and P̂ a partition of δ(s)
with |P̂ | ≤ 1

2
dG(s) for all P̂ ∈ P̂. Suppose there is an admissible pair but no rainbow

pair incident to s. Then G contains a simple C4-obstacle.
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Proof. Theorem 4.1 applies to G. Since no rainbow pair exists and |P̂ | ≤ 1
2
dG(s) for

all P̂ ∈ P̂, 4.1(i) does not hold. Then, by 4.1(ii), G contains a simple uncolored
C4-obstacle. 3.6.3 also holds, otherwise, by Claim 3.9 and Lemma 2.5, there exists a
rainbow pair, a contradiction.

4.2 A new splitting off theorem

In this section, we prove the following splitting off result.

Theorem 4.5. Let G = (V + s, E) be a hypergraph, where s is incident only to graph
edges, and P̂ a partition of δ(s). There is a complete rainbow splitting off in G if and
only if G is k-edge-connected in V, dG(s) ≥ 2ω(G − s) is even, |P̂ | ≤ 1

2
dG(s) for all

P̂ ∈ P̂ and G contains no obstacle.

Proof. Suppose there is a complete rainbow splitting off. By Lemma 3.13, all condi-
tions must clearly be satisfied.

Suppose now that all the conditions are satisfied. Let G and P̂ ′ be the hypergraph
and the partition of δG(s) obtained from G and P̂ by performing any longest sequence
of rainbow splittings. We must show that dG(s) = 0. We suppose that this is not the
case. Clearly, dG(s) = 2 cannot be the case, so dG(s) ≥ 4.

Lemma 4.6. G contains an admissible pair.

Proof. Suppose not and let {V1, . . . , Vl} be the partition and F the set of hyperedges
provided by Corollary 2.9.

Claim 4.7. Each split edge uv of G is a cut edge in G− s− F .

Proof. We may assume u, v ⊆ V1. Since we performed a longest sequence of rainbow
splitting off, in Guv we can not split consecutively admissible pairs su, svi and sv, svj
for any svi and svj with suitable colors (i, j 6= 1). Then there exists a dangerous set
of G containing either u, v, vi and vj or exactly one of u and v, and at least one of vi
and vj . Take a maximal such set Y. We may assume that u, vi ∈ Y . By Claim 2.6,
Y contains the tight set Vi, is disjoint from some Vk and if u, v ∈ Y , then V1 ⊂ Y .
Then F ∪ svi ⊆ δ(Y ) and either sv1, svj ⊆ δ(Y ) or uv ⊆ δ(Y ). Since |F| = k− 1 and
dG(Y ) ≤ k + 1, we have F ∪ svi ∪ uv = δ(Y ) and uv is a cut edge in G− s−F .

Since δ(Vi) = F ∪ svi, G − s − F has at least l connected components. Let F be
the set of split edges in G. Then, by Claim 4.7, G − s − F − F = G − s − F has
at least l + |F | connected components. As |F| = k − 1 and l = dG(s) ≥ 4, we get

1 + ω(G − s) ≥ l + |F | = dG(s)
2

+ dG(s)+2|F |
2

≥ 2 + dG(s)
2

≥ 2 + ω(G − s) a contradiction
that proves Lemma 4.6.

Since G contains no obstacle, but by Lemma 4.6 and Corollary 4.4, G contains a
simple C4-obstacle A = {A1, A2, A3, A4}, it follows that G contains a split edge.

Lemma 4.8. For every split edge e = xy, Ge contains an obstacle. In particular, if
x ∈ Ai and y ∈ Ai+1 for some i, then A is a C4-obstacle in Ge, and if x, y ∈ Ai for
some i, then Ge contains a C6-obstacle in which Ai+1, Ai+2, Ai+3 are consecutive sets.
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Proof. First suppose that x ∈ A1 and y ∈ A2. Then A is an uncolored C4-obstacle
in Ge. By Claim 3.9 and Lemma 2.5 applied in Ge, the pairs sx, sa3 and sy, sa4 are
admissible. If 3.6.3 does not hold in Ge, then one of them, say sx, sa3 is a rainbow
pair. In Ge

xa3
, each Ai is tight and s has no neighbor in A3 so by Claims 3.10 and 3.8,

no simple C4-obstacle exists, a contradiction by Corollary 4.4. Hence 3.6.3 holds and
then A is a C4-obstacle in Ge.
Secondly, we may suppose, by 3.6.2, that x, y ∈ A1. We may assume that (2)

holds in Ge. Let d denote the degree function in Ge. Note that, by (2), Ai = ai
for i = 2, 3, 4 because, by 3.6.1, these sets are tight in Ge. By possibly exchanging
the role of x and y we can assume that sx, sa3 is a rainbow pair in Ge by Claim
3.9 and Lemma 2.5 applied in G. By Lemma 4.4, Ge

xa3
contains a simple C4-obstacle

A′ = {A′
1, A

′
2, A

′
3, A

′
4}. We may assume x ∈ A′

1. As above, A′
i = a′i for i = 2, 3, 4.

If a3 /∈ A′
1, then A′

1 = a′1 = A1 and k = d(A′
1) = d(A1) = k + 2, a contradiction.

Thus a3 ∈ A′
1. Then d(A1) = k + 2 = d(A′

1). Let a1 = x and X = A1 ∩ A′
1. Observe

that d(s, V − (A1 ∪A′
1)) = d(s)− d(s, A1)− d(s, A′

1) + d(s, A1 ∩A′
1) = d(s,X). Since

x ∈ X, A1 ∪ A′
1 6= V. Moreover, d(s,X) = 1, otherwise V − (A1 ∪ A′

1) = {a2, a4}
and then, by (1) applied to X and A′

1 − A1 and by 3.6.2 for A, k + 2 = d(A′
1) =

d(X) + d(A′
1 −A1)− d1(X,A′

1 −A1) ≥ k+ k− |F| ≥ k+3, a contradiction. Then we
may assume a4 /∈ A′

1 and, by Claim 3.8 for A, d0(a3, a4) ≥ 1 in Ge
xa3

. Since a3 ∈ A′
1

and a4 ∈ A′, A′
1 and a4 are consecutive in A′ by 3.6.2. Hence we may assume that

a4 = a′4. Then a2 ∈ A′
1 and a′2, a

′
3 ∈ A1. The following claim finishes the proof of

Lemma 4.8.

Claim 4.9. {a1, a2, a3, a4 = a′4, a5 = a′3, a6 = a′2} is a C6-obstacle in Ge.

Proof. First we show 3.7.1-2: By (1) applied to A1 and A′
1 and by d(A1 ∪ A′

1) =
d(V − (A1 ∪ A′

1)) + 4 = k + 4, a1 = A1 ∩ A′
1 is tight and d0(a6, a2) = 0. By 3.6.2

for A and A′, there exists F ⊆ E such that k − |F| 6= 1 is odd and each hyperedge

of F contains V − a1. By Claim 3.8 applied to A and A′, d0(ai, ai+1) = k−|F|−1
2

for i = 2, . . . , 5. Since every ai is tight and d0(a6, a2) = 0, d0(ai, ai+1) =
k−|F|−1

2
for

i = 6, 1 and each hyperedge of F contains a1. Then d(ai∪ai+1) = k+1 for i = 1, . . . , 6.
Finally we show 3.7.3: Since a1∪a′2 and a′2∪a′3 are dangerous and sx, sy is admissible,
y = a′3. Since a2 and a4 are in consecutive sets of A′, c(sa2) 6= c(sa4). Thus, by 3.6.3
applied for A, c(sa6) = c(sa′2) = c(sa3). Similarly, c(sa5) = c(sa2). By Corollary
4.4, {a1, a2, a3 ∪ a4 ∪ a5, a6} is a simple C4-obstacle in Ge

a3a5
and c(sa2) 6= c(sa6) so

c(sa1) = c(sa4).

Alternative proof of Lemma 4.8. The proof of the first case (i.e. when x ∈ A1 and
y ∈ A2) is the same.
Secondly, we may suppose, by 3.6.2, that x, y ∈ A1. We may assume that (2)

holds in Ge. Let d denote the degree function in Ge. Note that, by (2), Ai = ai for
i = 2, 3, 4 because, by 3.6.1, these sets are tight in Ge. First note that if sy, sa2 is
admissible then sx, sa3 is again admissible in Ge

ya2
by Claim 3.9 (applied in G), so such

a sequence cannot be rainbow by the choice of G, in other words either c(sy) = c(sa2)
or c(sx) = c(sa3). This implies that at least one of sx, sa2 and sy, sa2 is not admissible:
if both of them were admissible then (by possibly switching x and y) we could achieve
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that c(sy) 6= c(sa2) and c(sx) 6= c(sa3) contradicting the conclusion of the previous
sentence. Without loss of generality we may assume that sx, sa2 is not admissible,
i.e. there exists a dangerous set X with x, a2 ∈ X (observe that y /∈ X because
sx, sy is admissible in Ge, and X − A1 = a2). Apply (1) for X and A1 to get that
k + 2 + k + 1 ≥ d(A1) + d(X) = d(A1 ∩X) + d(A1 ∪X) + d0(A1, X) + d1(A1, X) ≥
k + k + 3, implying that X ∩ A1 is tight (consequently X = {x, a2} by (2)) and
d0(A1, X) = d1(A1, X) = 0. By Claim 3.8 applied in G, d0(A1, a2) > 0, implying that
d0(x, a2) > 0. Now apply (1) for X and V +s−A1 to get that k+2+k+1 ≥ d(V +s−
A1)+d(X) = d(A1−X)+d(X−A1)+d0(V +s−A1, X)+d1(V +s−A1, X), and since
d(x, s) = 1 this implies that d(A1 −X) ≤ k + 1 and d0(x, a4) = 0. This latter further
implies that sx, sa4 is admissible, because we have seen above that the existence of a
dangerous set X ′ with x, a4 ∈ X ′ would imply d0(x, a4) > 0. However, sy, sa4 cannot
be admissible as shown above, thus there exists a dangerous set Y with y, a4 ∈ Y , in
fact Y = {y, a4}. We claim that {A1 − {x, y}, x, a2, a3, a4, y} is a C6-obstacle in Ge.
Apply (1) for A1 − x and A1 − y to get that 2(k + 1) ≥ d(A1 − x) + d(A1 − y) =
d(A1) + d(A1−{x, y}) + d0(A1 − x,A1 − y) + d1(A1 − x,A1 − y) ≥ k+2+ k, showing
that d(A1−x) = d(A1−y) = k+1, A1−{x, y} = a1 is tight and d0(A1−x,A1−y) =
d1(A1 − x,A1 − y) = 0. This gives 3.7.1. From 3.6.2 applied in G, there exists F ⊆ E
such that k − |F| 6= 1 is odd and every hyperedge of F intersects A1 and contains
a2, a3, a4. We claim that this hyperedge set actually satisfies 3.7.2 in Ge. Since
d1(A1, {x, a2}) = 0, every hyperedge of F contains x, and similarly every hyperedge
of F contains y. Furthermore, d1(A1− x,A1− y) = 0 implies that every hyperedge of

F contains a1, too. By Claim 3.8 applied in G, d0(a2, x) = d0(A1, a2) =
k−|F|−1

2
, since

d1(A1, {x, a2}) = 0: similarly d0(a4, y) =
k−|F|−1

2
. Since δ(a1) − (sa1 + F) can only

contain graph edges between a1 and either x or y, and since k = d(a1) = d(x) = d(y),

this gives that d0(a1, x) = d0(a1, y) =
k−|F|−1

2
, finishing the proof of 3.7.2. To show

3.7.3, first observe that c(sx) = c(sa3) would imply that the sequence of splitting off
sx, sa4 followed by sy, sa3 is rainbow, a contradiction, and similarly c(sy) 6= c(sa3)
can also be deduced. Therefore c(sa4) = c(sx) 6= c(sy) = c(sa2), giving 3.7.3.

Lemma 4.10. There exist two split edges e and f in G and a rainbow pair su, sv in
Ge,f such that G′ := Ge,f

uv contains no obstacle.

Proof. By Lemma 4.8, we distinguish two cases.

Case 1: If every split edge in G connects consecutive members of A then A is an
uncolored C4-obstacle in G. In G, let ai denote the neighbor of s in Ai for every i. By
Lemma 4.8, A is a C4-obstacle in Ge for every split edge e = xy, hence one of x and y
belongs to a dominating set in Ge, which is also a dominating set in G. If we had the
same dominating set for all split edges, then A would be a C4-obstacle in G which is
a contradiction. Thus there exist split edges e = xy and f = x′y′ so that the different
colors P̂ of sx and P̂ ′ of sx′ are dominating in G and sy, sy′ /∈ P̂ ∪ P̂ ′. If y ∈ Aj ,

then saj ∈ P̂ ′ and hence sx, saj is a rainbow pair. In Ge,f
xaj

, the sets of A are tight, so
by Claim 3.10, no C6-obstacle exists. Moreover, there is no dominating color, so no
C4-obstacle exists.
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Case 2: If there exists a split edge e contained in Ai for some i then, by Lemma 4.8,
Ge contains a C6-obstacle {B1, . . . , B6}. In Ge, let bi be the neighbor of s in Bi for
every i. Since G contains no obstacle, Ge has a split edge f = xy. We may assume
that x ∈ B1. By 3.7.3, Claim 3.9 and Lemma 2.5, {sb4, sb2} is a rainbow pair in
Ge. By Claim 3.11, {B2 ∪ B3 ∪ B4, B5, B6, B1} is a simple C4-obstacle in Ge

b4b2
. By

Lemma 4.8, Ge,f
b4b2

contains an obstacle A′. If y /∈ B1, then we may assume, by 3.7.2,
that y ∈ B2. By Lemma 4.8, A′ is a C4-obstacle. Then, by 3.6.3, c(sb3) = c(sy).
The same argument applied to {sb4, sb6} shows that c(sb5) = c(sy). The edge sy
should be of two different colors, a contradiction. If y ∈ B1, then by Lemma 4.8, A′

must be a C6-obstacle in which B2 ∪ B3 ∪ B4, B5, B6 are consecutive sets, but since
c(sb3) = c(sb6), this gives a contradiction.

Lemma 4.11. G′ contains a rainbow pair sw, sz.

Proof. First we show that G′ contains an admissible pair. Otherwise, by Corollary
2.9, 5 = dG′(s) − 1 ≤ ω(G′ − s) ≤ ω(G − s) + 2. However, since G contains an

admissible pair, ω(G − s) ≤ dG(s)
2

= 2, a contradiction. Secondly, if there was no
rainbow pair in G′, then by Corollary 4.4, G′ would contain a simple C4-obstacle,
hence 4 = dG′(s) = 6, a contradiction.

Since dG′
wz
(s) = 4 = dG(s), the hypergraph G′

wz is obtained from G by performing
a longest sequence of rainbow splittings, so by Lemma 4.8, G′ contains an obtacle
contradicting Lemma 4.10. The theorem is proved.

4.3 A new augmentation theorem

In this section we present our main theorem. It states that the lower bound Φ can be
achieved except when the starting hypergraph contains a configuration. In this case,
we need one more edge. Recall that Φ was defined in Section 3.

Theorem 4.12. Let H = (V, E) be a hypergraph, P a partition of V and k an integer.
Then the minimum number of graph edges to be added between different members of P
in order to make H k-edge-connected is Φ if H contains no configuration, and Φ+ 1
otherwise.

Proof. The following lemma proves the theorem.

Lemma 4.13. Φ ≤ OPT (H,P, k) ≤ Φ + 1. Moreover, OPT (H,P, k) = Φ if and
only if H contains no configuration.

Proof. By Lemma 3.2, we have the first inequality. By Theorem 3.4, there exists an
optimal extension (Ĥ, P̂) of (H,P). We can add two edges incident to s without

violating |P̂ | ≤ d(s)
2

for all P̂ ∈ P̂ to get (H′,P ′). By 3.3.2, dH′(s) = 2Φ+ 2. The two
additional edges do not enter tight sets in H′ so no obstacle exists by 3.6.1 and 3.7.1.
Theorem 4.5 applied to H′ and P ′ provides a complete rainbow splitting off and we
have the second inequality.
If H contains no configuration, then, by Lemma 3.17, there exists an optimal exten-

sion (Ĥ, P̂) of (H,P) that contains no obstacle. By 3.3.2, dĤ(s) = 2Φ. By Theorem
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4.5 applied to Ĥ and P̂ , there exists a complete rainbow splitting off in Ĥ, therefore
OPT (H,P, k) = Φ.
If OPT (H,P, k) = Φ, then let F be an optimal solution, let G be obtained from

H+ F by adding a vertex s and by replacing every edge uv ∈ F by the edges su and
sv and let P̂ be defined as described in Definition 3.3. Since |F | = Φ, (G, P̂) is an
optimal extension of (H,P). Since H + F is obtained from G by a complete rainbow
splitting off, Lemma 3.13 implies that G contains no obstacle and hence, by Lemma
3.17, H contains no configuration.

We emphasize that Theorem 4.12 specialized to graphs provides Theorem 1.1 and
specialized to the partition composed of singletons provides Theorem 1.2.

5 Algorithmic aspects

In this section, we explain why the proof of our main theorem yields a strongly
polynomial algorithm that finds a set of edges, of the desired cardinality, respecting
the partition constraints and whose addition makes the hypergraph k-edge-connected.

Our algorithm starts as the algorithm of [2]: find an optimal extension of the
starting hypergraph. What follows is quite different: we first decide if this optimal
extension contains an obstacle. If it does, then we modify the extension to get another
one that contains no obstacle. Eventually, the new extension will contain two more
edges incident to s. Then we find a complete rainbow splitting off that provides the
set of edges of desired cardinality. We now explain why each of these steps is strongly
polynomial.

Local edge-connectivity: Given a hypergraph H = (V, E) and x, y ∈ V , we need
a subroutine to compute the local edge-connectivity λ(x, y) between x and y. By
using a Max Flow-Min Cut algorithm in the capacitated bipartite incidence digraph
of the hypergraph H, this can be done in O((n +m)3), where n = |V | and m = |E|,
for details see [1].

Deletion of edges incident to s: Given a hypergraph G = (V +s, E) that is k-edge-
connected in V where δ(s) consists of graph edges, one can compute in O(n2(n+m)3)
the maximum number of copies of sx that can be removed from the hypergraph
without destroying the k-edge-connectivity in V , see [1].

Splitting off: Given a hypergraph G = (V + s, E) that is k-edge-connected in V
where δ(s) consists of graph edges and two neighbors x and y of s, one can compute
the maximum number of admissible splittings sx, sy in O(n(n+m)3), see [1].

Tight sets: Given a hypergraph G = (V + s, E) that is k-edge-connected in V
where δ(s) consists of graph edges, if a vertex u ∈ V belongs to a tight set, then
the above results allow us to compute the minimal one in O(n(n + m)3), namely
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Xu = {u} ∪ {v ∈ V : λ(u, v) > k}. We can also compute the maximal one in
O(n2(n + m)3) as follows. For every vertex v ∈ V, contract s and v and find the
minimal tight set X̄v (if it exists) containing the resulting vertex. Then V − X̄v is
a maximal tight set in G that contains u but not v. Thus by n minimal tight set
computations, we may find the maximal tight set containing u. We mention that if u
is a neighbor of s, then the maximal tight set containing u is unique.

Optimal extension: The above facts imply that we may find an optimal extension
of the starting hypergraph in O(n3(n+m)3) using the algorithm given in the proof of
Theorem 3.4: Steps 1. to 4. by results of [1], and Step 5. requires the computation
of at most n minimal tight sets.

Obstacle: Deciding if V is partitioned into four or six maximal tight sets requires
at most 6 computations of maximal tight sets. If it is the case, then checking if the
partition is an obstacle is straightforward. Therefore, by Claim 3.10, deciding if the
extension contains an obstacle is done in O(n2(n+m)3).

Destroying obstacles: If the optimal extension contains an obstacle, then the proof
of Lemma 3.17 gives the strongly polynomial algorithm that decides if the starting
hypergraph contains a configuration. If there is no configuration, then it finds an
optimal extension containing no obstacle by at most n computations of minimal tight
sets. Otherwise, add two edges between s and V in order to ensure that no obstacle
exists, as in the proof of Lemma 4.13. In both cases, by Theorem 4.5, there exists a
complete rainbow splitting off in the resulting hypergraph.

Complete splitting off: To find a complete rainbow splitting off, we proceed in
two steps. First, perform arbitrary rainbow splitting off as long as possible. The
second step consists of unsplitting some split edges in order to find a longer sequence.
This step considers two cases: either there are no admissible pairs, or there exists a
simple C4-obstacle.
To start, perform an arbitrary sequence of rainbow splitting off until there are no

rainbow pairs in the resulting hypergraph G. This can be done in O(n3(n + m)3)
because, for any two neigbors x and y of s, the maximum number of copies of sx, sy
that can be split off can be computed in O(n(n+m)3). If the sequence is complete,
then we are done. Otherwise, one of the following cases occurs.

(i) G contains no admissible pair. Then, by Corollary 2.9, there is a partition
of V into tight set {V1, . . . , V`} and a set F of k − 1 hyperedges such that
δ(Vi) = svi ∪ F , where vi = Vi ∩ Γ(s). In fact, each set Vi is a maximal
tight set by Claim 2.6.2. As d(s) ≤ n, we can compute {V1, . . . , V`} and F

in O(n3(n + m)3). Repeating the following (∗) at most d(s)
2

≤ n
2
times either

completes the sequence of rainbow splitting off or puts us in Case (ii). By the
proof of Lemma 4.6,
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(∗) there exists a split edge e = uv, with u, v ∈ Vi for some i ∈ {1, . . . , `}, and a
rainbow pair sx, svj in Ge, with x ∈ {u, v} and j 6= i, such that G′ := Ge

xvj

contains an admissible pair. If G′ contains no rainbow pair, then we are in Case
(ii). If G′ contains a rainbow pair, then split it. Note that this pair is sy, svk for
some k 6= i, j, where y = {u, v} − x. Thereafter, no admissible pair exists and
{Vi ∪ Vj ∪ Vk} ∪ {Vr : r 6= i, j, k} is the partition of V into maximal tight sets.

Note that, by Claim 4.7, finding e means finding a split edge that is not a cut
edge in G−F − s. Hence (∗) was done in O(n2(n+m)3) as it simply required
to find admissible pairs containing su and sv.

(ii) G contains an admissible pair. Then, by Theorem 4.1, it contains a simple
C4-obstacle. As seen previously, finding the simple C4-obstacle can be done in
O(n2(n+m)3). Now, the proofs of Lemmas 4.10 and 4.11 find one or two edges
to unsplit in order to find a complete rainbow splitting off, and then directly
give the edges to be split off.

We have sketched why our algorithm finds a set of edges of the desired cardinality
in strongly polynomial time, and its overall complexity is in O(n3(n +m)3). It relies
mostly on the strongly polynomiality of the subroutine — finding a minimum cut in
a hypergraph — due to the flow techniques of [1]. We emphasize that our algorithm
is quite different from the algorithm to make a graph k-edge-connected with partition
constraints of [2] because we may decide if an obstacle exists before the splitting off
step.
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