
Gathering information in a peer-to-peer

network

Laurent Beaudou∗ Roland Grappe† Geña Hahn‡

Abstract

In this paper, we address the problem of gathering scattered in-
formation in a given node of a peer-to-peer network. The network is
modeled by a graph G. Suppose each vertex in G has a unit of infor-
mation and that all the units must be collected at a vertex u in G.
Assuming that a vertex can receive (from its neighbours) an unlimited
number of units at each discrete moment but can only send one at a
time, find the shortest collection time, colu(G), needed to collect all
the information at u and an optimal protocol that achieves this.

We derive lower and upper bounds for the problem, give a polyno-
mial time algorithm in the general case, and a linear time algorithm
for hypercubes.

1 Introduction

The problem has its origin in a file decomposition by Michael O. Rabin [7].
A file is split into N pieces of the same length in such a way that any K

pieces are sufficient to rebuild the original file. This can be done efficiently,
without significantly increasing the size of the file. Such a decomposition
(obtained by an IDA: information dispersal algorithm) has key applications
in file sharing since it provides at the same time security and anonymity of
the data (if each server has a small number of parts, destroying one server
does not destroy the data, and no server has enough of the file to be charged

∗Université de Montréal, Canada. E-mail: lbeaudou@ujf-grenoble.fr
†Università di Padova, Italy. E-mail: roland.grappe@g-scop.inpg.fr
‡Université de Montréal, Canada. E-mail: hahn@iro.umontreal.ca

1

for its content). Recently these ideas have been applied to file sharing in
peer-to-peer networks [4].

Our model is a connected graph G with N + 1 vertices (including a re-
ceiver) that corresponds to the overlay network. Each vertex v (correspond-
ing to a server in the network) distinct from the receiver has one of the N

parts, and each of the N parts is in the graph. Each edge e of G has a weight
w(e) that corresponds to the propagation delays in the network.

A node can send at most one part at a time (that corresponds to limited
upload speed), but can receive many parts at the same time (unlimited down-
load speed). Two parts cannot be combined and sent as a bigger message,
they have to be sent separately (sending ports have a limited buffer).

The model is synchronous: if a part P is sent by u to its neighbour v

at time t, it will be received by v at time t + w(uv). At any time t ≤ t′ ≤
t + w(uv), u may send nothing else. Also, v will only be able to send P to
someone else after time t + w(uv).

The aim is to schedule transmissions in the network so that the receiver
collects K distinct parts of the original file (we refer to the protocol realizing
the schedule as a transmission as well).

This problem looks very similar to the packet routing questions, which
have been the object of a wide interest over the last decades [5, 6, 8]. The
difference is that the restrictions are made on the edges (which cannot trans-
mit more than some number of packet at each step). As close as it seems we
were not able to find an easy reduction to theses problems.

We want to minimize one of the following two parameters (2 distinct
problems):

1. the total bandwidth (sum of the weights of occurrences of the edges
used by a transmission – each edge can be counted several times),

2. the total time of the transmission (we stop as soon as the receiver has
collected K distinct parts).

In this paper, we focus on the second problem in the case K = N and
w(e) = 1 for each edge e of G. In Section 2, we define the problem formally.
In Section 3, we derive lower and upper bounds for the problem. In Section
4, we give a polynomial algorithm for the problem. In Section 5, we solve
the problem exactly for the hypercube of dimension d and give a linear-time
algorithm for finding a transmission.

2

2 Definitions

Let G = (V, E) be a connected graph (disconnected graphs are not relevant
to the problems at hand) and let u ∈ V be a vertex of G. We seek to solve two
closely related communication problems on G. Any sending and receiving is
between adjacent vertices in G.

Problem 1. Suppose each vertex has a unit of information and that all the
units must be collected at u. Assuming that a vertex can receive an unlimited
number of units at each discrete moment but can only send one at a time,
find the shortest collection time, colu(G), needed to collect all the information
at u and an optimal protocol that achieves this.

Problem 2. Suppose the vertex u has |V | units of information that must
be distributed to all the vertices of G (one unit per vertex). Assuming that
each vertex can send an unlimited number of information units at each dis-
crete moment but can only receive one, find the minimum distribution time
distu(G) needed to distribute all the information units and an optimal protocol
that achieves this.

It is also of interest to find distM(G) = max{distu(G) : u ∈ V } and
distm(G) = min{distu(G) : u ∈ V } when considering the first problem and
colM(G) = max{colu(G) : u ∈ V } and colm(G) = min{colu(G) : u ∈ V }
when looking at the second problem.

It is easy to see that the two problems are equivalent. It suffices to reverse
the protocol of one to get a protocol for the other that runs in the same time.
This leads to Proposition 1.

Proposition 1. For any graph G and any vertex u in G, colu(G) = distu(G) .

From now on, we only deal with Problem 1.

3 Bounds

In this section, we derive simple lower and upper bounds on colu(G) for any
graph G = (V, E) and a vertex u in G.

3

3.1 Lower bounds

For any S ⊂ V \{u}, let the boundary of S, denoted by ∂S ⊆ S, be the set of
vertices of S which have at least one neighbour in V \S. For any set A ⊆ V ,
d(A, u) denotes the minimum distance d(u, v) taken over all v ∈ A.

Proposition 2. We have:

colu(G) ≥ max
S⊆V \{u}

(⌈

|S|

|∂S|

⌉

+ d(S, u) − 1

)

. (1)

Proof. Take any set S ⊆ V \ {u} (see Figure 1). At time 0, S contains |S|
units of information that have to be collected in u. At each step, no more

than |∂S| units can leave S. This gives (
⌈

|S|
|∂S|

⌉

), the first term of (1).

S
∂S

u

Figure 1: A set of vertices S and its boundary ∂S.

Once a unit of information has left S, it is at distance at least d(S, u)− 1

of u. These two terms sum together and we get colu(G) ≥
⌈

|S|
|∂S|

⌉

+d(S, u)−1.

This is true for any S, it remains to take the maximum value over these S

and we obtain (1).

For a vertex v ∈ V , let ǫ(v) denote the eccentricity of v in G, i.e. ǫ(v) =
max{d(v, v′) : v′ ∈ V }. If we take S = V \ {u} and S = {v} with d(u, v) =
ǫ(u), Proposition 2 implies the two following results, which are both optimal.

Corollary 1. For any graph G and any vertex u in G, colu(G) ≥ ǫ(u) .

Corollary 2. For any graph G = (V, E) and any vertex u in G, colu(G) ≥
⌈

|V |−1
deg(u)

⌉

.

4

3.2 Upper bound

We now give an upper bound.

Proposition 3. Let G = (V, E) be a connected graph, let u ∈ V . Then,
colu(G) ≤ |V | − 1.

Proof. Let us prove this by induction on |V |. We actually need a stronger
induction hypothesis, which is:

P(n) : for every connected graph G = (V, E) on n vertices, and every
u ∈ V , there is a protocol collecting every unit of information in at most
n− 1 steps such that u receives at least one unit of information at each step.

P(1) is trivially true. Let us suppose that P(i) is true for i ≤ n, we shall
prove P(n + 1). Let G = (V, E) be a connected graph on n + 1 vertices
and u be one of its vertices. Removing u from G leaves k ≥ 1 connected
components C1 . . . Ck, each with at least one vertex vi ∈ Ci adjacent to u

in G. Moreover, each Ci has fewer than n + 1 vertices. We can, therefore,
use our induction hypothesis and exhibit for each 1 ≤ i ≤ k a protocol pi

collecting all the units of information of Ci in vi in at most |Ci|−1 steps and
such that vi receives at least one unit of information at each step.Thus in G,
we can use the protocol pi on Ci for each i and send one unit of information
from vi to u at each time unit. The total time required is then clearly at
most 1 +

∑

1≤i≤k |Ci| − 1 ≤ |V | − 1.

Using the same idea, we can also find a protocol collecting every unit in
at most n−1 steps in such way that at every step, the subgraph of G induced
by u and the vertices containing some information is connected.

4 A polynomial algorithm

We prove that the following question is solvable in polynomial time:

Collect

Input: A graph G = (V, E), a vertex u ∈ V and a time T ∈ N
>0

Output: YES if colu(G) ≤ T

NO if colu(G) > T .

We reduce Collect to Max-Flow [2]. We use the following formulation
of problem Max-Flow(this is standard, see, for example, [2] or [1]).

5

Max-Flow

Input: A directed graph G = (V, A), a capacity function c : A → R, two
vertices s and t in V , and a real number f ∈ R

Output: YES if there exists an st-flow with value at least f

NO otherwise.

Consider a Collect instance: A graph G = (V, E), a vertex u and a
time T ∈ N

∗. Let n denote the order of G (n = |V |) and write [0, T] =
{0, 1, . . . , T − 1}.

We build an instance of Max-Flow. The directed graph G̃ = (Ṽ , Ã)
is built as follows: Ṽ consists of s and t, together with all the triples in
(V \ {u}) × {in, out} × [0, T − 1].

Ã consists of five types of arcs, identifying multiple arcs between the same
vertices (see Figure 2).

• Type 1: ∀v ∈ V \ {u}, (s, (v, in, 0)) ∈ Ã

• Type 2: ∀v ∈ V \ {u}, ∀τ ∈ [0, T − 1], ((v, in, τ), (v, out, τ)) ∈ Ã

• Type 3: ∀v ∈ V \ {u}, ∀τ ∈ [0, T − 2], ((v, in, τ), (v, in, τ + 1)) ∈ Ã

• Type 4: ∀v1, v2 ∈ V \ {u} s.t. v1v2 ∈ E, ∀τ ∈ [0, T − 2],
((v1, out, τ), (v2, in, τ + 1)) ∈ Ã

• Type 5: ∀v ∈ V such that uv ∈ E, ∀τ ∈ [0, T − 1], ((v, out, τ), t) ∈ Ã

The capacity function on the arcs of Ã is defined as:

c : a 7−→

{

1 if a has type 1, 2, 4 or 5.

n if a has type 3.

Claim 1. G̃ with capacity function c has an st-flow with value at least n− 1
if and only if colu(G) ≤ T .

Proof. From Max-Flow to Collect. Suppose first that G̃ with capacity
function c has an st-flow with value at least n − 1. Since the arcs leaving
s consists of n − 1 arcs of capacity 1, the maximum st-flow value cannot
exceed n − 1. Therefore the maximum flow value is n − 1. Moreover, since
the capacities are integers, we know [3] that there exists a maximal flow

6

u

v1

v2

v3

v4

s

t

v4

v2

v3

v1

in out in out
τ = 0 τ = 1

Figure 2: A graph G and most of its corresponding digraph G̃. Not shown:
the arcs to t from (vi, out, j), i = 2, 4, j = 0, 1.

x : Ã → N. From x, we will build a protocol on G so that u collects every
unit of information in at most T steps.

If an arc a = ((v1, out, τ), (v2, in, τ+1)) (Type 4 arc) is such that x(a) = 1,
then, in our protocol, vertex v1 sends a unit of information to vertex v2 at
time τ + 1. Similarly, if an arc a = ((v1, out, τ), t) (Type 5 arc) is such that
x(a) = 1, then, in our protocol, vertex v1 sends a unit of information to
vertex u at time τ + 1. We have to prove that this protocol is valid.

Consider a vertex v ∈ V \ {u} and a time τ . In G̃, (v, out, τ) has an
in-capacity of 1 (the only arc arriving is ((v, in, τ), (v, out, τ)) which has ca-
pacity 1). Since x is integral, there cannot be more than one arc leaving
(v, out, τ) used by x. Therefore, in our protocol, no vertex sends more than
one unit of information at a time. We still have to prove that when it is
supposed to send a unit of information, a vertex actually has at least one
unit of information. For this, we prove the following property:

For all τ ∈ [0, T −1] and v ∈ V \{u}, the number of units of information
at vertex v at time τ in our protocol is equal to the quantity of flow going
through (v, in, τ).

7

Since x has a value of n−1 and s has only n−1 outgoing arcs each of them
with capacity 1, all of them satisfy x(a) = 1. For every vertex v ∈ V \ {u},
there is only one arc ending in (v, in, 0) which is (s, (v, in, 0)). Thus there is
exactly one unit of flow going through (v, in, 0). The property is then true
for τ = 0.

Assume that the property is true for some τ ∈ [0, T − 2], we will prove it
for τ + 1. Let v be a vertex of G. At time τ , it has k units of information
where k is the quantity of flow going through (v, in, τ). Vertex (v, in, τ) has
exactly two outgoing arcs, one to (v, out, τ) with capacity 1 denoted by a

and one to (v, in, τ + 1) with capacity n denoted by b.

• If x(a) = 1, there must be an arc leaving (v, out, τ) used by x with
capacity 1 ; this means that in our protocol, v sends a unit of informa-
tion between τ and τ + 1. Furthermore, x(b) = k − 1 which represents
the number of units of information staying at v between τ and τ + 1.
During that step, v receives also one unit of information, for each ver-
tex v′ such that x((v′, out, τ), (v, in, τ + 1)) = 1. In the end, v contains
as many units of information as the quantity of flow going through
(v, in, τ + 1).

• If x(a) = 0, all the units of information stay at v between τ and τ + 1
and x(b) = k. Similarly, this sums with the flow coming from others
vertices of Ṽ yielding the same conclusion.

The property is then true. Consider a vertex v ∈ V \ {u} at time T − 1.

• If it is not a neighbour of u, then the only arc leaving (v, in, T −1) goes
to (v, out, T − 1) which has no outgoing arc. Thus, there cannot be
any flow going through (v, in, T − 1). By the property, v has no unit of
information at time T − 1.

• If it is a neighbour of u, then (v, in, T −1) has exactly one outgoing arc
to (v, out, T − 1) which capacity is 1. Therefore, the quantity of flow
going through (v, in, T − 1) cannot exceed 1. We conclude that in our
protocol, v has at most one unit of information at time T − 1. It can
send it to u at time T .

This proves that our protocol is correct and collects all the information
in at most T steps. So (G, u, T) is a positive instance of Collect.

8

From Collect to Max-Flow. Suppose there exists a protocol collect-
ing all the information in u in less than T steps. From it, we build a flow
x of value n − 1. Set x(a) = 1 for every arc a with type 1 (arcs leaving s).
For every arc a of type 2 (between (v, in, τ) and (v, out, τ)), set x(a) = 1 if v

sends a unit of information at time τ + 1, and x(a) = 0 otherwise. For every
arc a with type 3 (between (v, in, τ) and (v, in, τ + 1)), set x(a) equal to the
number of units of information staying at v between τ and τ + 1. For every
arc a of type 4 or 5, set x(a) to 1 if the corresponding vertex sends a unit of
information at the corresponding step; otherwise, set x(a) = 0.

The law of conservation is naturally satisfied since the number of units
of information staying in v together with the number of unit of information
leaving v (can be 0 or 1), is equal to the number of units of information
already at v at the previous step, together with the number of vertices that
send a unit of information to v at the current step.

Finally, the value of x is n − 1 since
∑

x(s, (v, in, 0)) = n − 1.

The graph G̃ has O(|V |T) vertices and O(|V |T + |E|T) arcs. Since, by
Proposition 3, colu(G) ≤ |V | − 1, we may consider that T ≤ |V |. Moreover,
|E| ≤ |V |2. So, G̃ has O(|V |2) vertices and O(|V |3) arcs. Since the maximum
flow is bounded above by |V |, Ford-Fulkerson’s algorithms runs on G̃ in
O(|V |4) [3].

5 A faster algorithm for hypercubes

For particular classes of graphs, we can do far better than O(|V |4). For
example, an optimal gathering can be found in linear time in trees (any
shortest-path routing will be an optimal solution).

We now consider hypercubes. We denote by Qd the hypercube of di-
mension d, that is, the graph on V = {0, 1}d with two vertices adjacent
if they differ in exactly one coordinate. Clearly every vertex has exactly d

neighbours. The proof relies on the recursive structure of Qd

Fix a collecting vertex x0 (hypercubes are vertex-transitive, so any vertex
will do). We shall prove that the bound implied by Corollary 2 is tight.
The proof hinges on the simple obseravtion that the bound of Corollary 2 is
achieved if and only if the neighbours of the gathering vertex have something
to send at every time step (except possibly some of them at the very last
step). We will speak of feeding these vertices so that this can be achieved.

9

Theorem 1. In Qd, there exists a collecting strategy for x0 using
⌈

2d−1
d

⌉

steps.

Proof. Induction hypothesis P(d): there is a protocol that collects all infor-

mation in Qd at a specified vertex in ⌈2d−1
d

⌉ steps in such a way such that
the neighbours of the collecting vertex are never empty except maybe at the
last step.

P(1), P(2), P(3), P(4) and P(5) are easily found to be true
Let us show that for any d ≥ 6, P(d − 1) ⇒ P(d).
We can consider Qd as the union of two instances of Qd−1, namely H0

and H1. We may assume that x0 is in H0. Let us denote by x1 the neighbour
of x0 in H1; it will be the gathering vertex there. Each of the two vertices
has d − 1 neighbours in its respective subgraph Hi. We denote them by
x0

1, . . . , x
0
d−1 and x1

1, . . . , x
1
d−1. We want to find a strategy which collects all

the units of information in ⌈2d−1
d

⌉ steps, such that x0
1, . . . , x

0
d−1 and x1 are

never empty except maybe for the last step.
By P(d − 1) we can feed xi

1, . . . , x
i
d−1 for i ∈ {0, 1} from step 1 to step

⌈2d−1−1
d−1

⌉ − 1. Vertices xi
1, . . . , x

i
k (1 ≤ k ≤ d − 1) are fed until step ⌈2d−1−1

d−1
⌉.

Therefore we can consider that we play on the subgraph induced by x0, x1

and the xi
j ’s, with 1 unit of information at x1, ⌈

2d−1−1
d−1

⌉ units of information at

xi
j for 1 ≤ i ≤ k and ⌈2d−1−1

d−1
⌉−1 units of information at xi

j for k < j ≤ d−1.
The protocol to collect all these units of information can be described

as follows. Vertices x0
j will keep sending one unit of information to x0 at

each step. The total amount of information going through such a vertex
must be between ⌈2d−1

d
⌉ and ⌈2d−1

d
⌉ − 1. Vertex x1 will also send one unit of

information to x0 at each step. We will ensure that exactly ⌈2d−1
d

⌉ units of
information go through this vertex.

In a first phase, vertices x1
j will send units of information to x1 so that x1

gets the needed ⌈2d−1
d

⌉ units of information. It might be that the last step
of this phase requires only some of these vertices to send a unit to x1. In
such a case, we keep the balance by considering prioritarily x1

j with j ≤ k.
In a second phase, each x1

j1
gets matched with a x0

j2
and will send all its

information to this vertex. Once again, in order to conserve the balance, we
match the exceeding vertices to the lacking ones prioritarily. This matching
can be chosen as we want because of the symmetry of the hypercube. There
is no need to compute the exact amount going through the x0

j ; since it is

balanced, the amount is necessarily between ⌈2d−1
d

⌉ and ⌈2d−1
d

⌉ − 1.

10

In the end, we just have to prove that the first phase will not need too
much time which would leave some x0

j ’s empty during the protocol. In other

words we have to prove that the time of the first phase

⌊

‰

2
d
−1

d

ı

−1

d−1

⌋

is less

than the smallest number of unit of information on some x0
j , ⌈

2d−1−1
d−1

⌉ − 1.

Let t =

⌊

‰

2
d
−1

d

ı

−1

d−1

⌋

.

Since d ≥ 6,

(

d

2
− 1

)

× 2d − 2d2 − 3d + 1 > 0

d × [2d−1 − 2(d − 1)] − d > 2d − 1

2d−1 − 2(d − 1) >

⌈

2d − 1

d

⌉

2d−1 − 1 − (d − 1) >

⌈

2d − 1

d

⌉

− 1 + (d − 1)

2d−1 − 1

d − 1
− 1 >

⌈

2d−1
d

⌉

− 1

d − 1
+ 1

⌈

2d−1 − 1

d − 1

⌉

− 1 >









⌈

2d−1
d

⌉

− 1

d − 1









⌈

2d−1 − 1

d − 1

⌉

− 1 > t.

Therefore, property P(d) holds.
In the end we have proved that P(d) holds for any d.

6 Conclusion

In spite of believing for a while the problem Collect to be NP−complete
in general, we have shown that it is polynomial-time solvable and that for
the hypercube Qd there is a simple protocol that achieves the lower bound
on col(Qd). There remain some unanswered questions.

11

1. Can we characterize the graphs for which the lower bound on colu(G)
can be achieved?

2. Is it true that for vertex-transitive graphs (where clearly colu(G) =
colv(G) = colm(G) = colM(G) for any vertices u and v) the lower
bound can always be achieved? In particular, is this true for Cayley
graphs?

3. Are there classes of graphs for which a lower-degree polynomial time
algorithms is possible?

4. What can we say if the number of units of information a vertex can
receive at one time is bounded? What is the number of units of infor-
mation a vertex cans store is bounded?

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James Orlin: Network
Flows: Theory, Algorithms, and Applications. Prentice Hall, 846 pages,
1993.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein: Section 26.2: The Ford-Fulkerson method. Introduction to
Algorithms (Second ed.). MIT Press and McGraw-Hill, pp. 651–664,
2001. ISBN 0-262-03293-7.

[3] L.R. Ford and D.R. Fulkerson: Maximal flow through a network. Cana-
dian Journal of Mathematics 8:399–404, 1956.

[4] http://www.freehaven.net/

[5] B. Hoppe and É. Tardos: The quickest transshipment problem. Math.
Oper. Res. 25(1):36–62, 2000.

[6] F. T. Leighton, B. M. Maggs, and S. B. Rao: Packet routing and
job-shop scheduling in O(congestion+dilation) steps. Combinatorica
14:167–186, 1994.

[7] Michael O. Rabin: Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM, 36(2):335–348,
1989.

12

[8] A. Srinivasan and C.-P. Teo: A Constant-Factor Approximation Al-
gorithm for Packet Routing and Balancing Local vs. Global Criteria.
SIAM J. Comput. 30(6):2051–2068, 2000.

13

