

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

journal homepage: www.elsevier.com/locate/jctb

A weak box-perfect graph theorem

Patrick Chervet ^a, Roland Grappe ^{b,c}

- ^a Lycée Olympe de Gouges, Noisy le Sec, France
- ^b Université Paris Dauphine, PSL Research University, LAMSADE, CNRS UMR 7243. Paris. France
- ^c Université Sorbonne Paris-Nord, LIPN, CNRS UMR 7030, Villetaneuse, France

ARTICLE INFO

Article history: Received 14 June 2023 Available online xxxx

Keywords: Perfect graphs Box-perfect graphs Complete join

ABSTRACT

A graph G is called perfect if $\omega(H)=\chi(H)$ for every induced subgraph H of G, where $\omega(H)$ is the clique number of H and $\chi(H)$ its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph G is perfect if and only if its complement \overline{G} is perfect. This does not hold for boxperfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.

We prove that both G and \overline{G} are box-perfect if and only if \overline{G}^+ is box-perfect, where G^+ is obtained by adding a universal vertex to G. Consequently, G^+ is box-perfect if and only if \overline{G}^+ is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

In a graph, a *clique* is a set of pairwise adjacent vertices, and a *stable set* is a set of pairwise nonadjacent vertices. The *stable set polytope* S(G) of a graph G is the convex hull of the incidence vectors of its stable sets. A graph G is called *perfect* if $\omega(H) = \chi(H)$ for every induced subgraph H of G, where $\omega(H)$ is the clique number and $\chi(H)$ the chromatic number of H. Lovász [9] proved the Weak Perfect Graph The-

 $[\]label{lem:energy:equal} \emph{E-mail addresses:} \ pat.chervet@gmail.com \ (P.\ Chervet), \ roland.grappe@lamsade.dauphine.fr \ (R.\ Grappe).$

orem, which states that a graph G is perfect if and only if its complement \overline{G} is perfect. It is also known [4,8] that perfect graphs are the graphs whose stable set polytope is described by the system composed of the clique inequalities and the nonnegativity constraints:

$$\begin{cases} \sum_{v \in C} x_v \le 1 & \text{for each maximal clique } C \text{ of } G, \\ x \ge \mathbf{0}. \end{cases}$$
 (1)

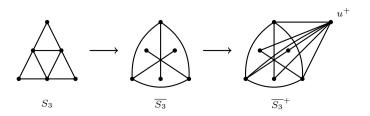
In fact, system (1) is totally dual integral if and only if G is perfect. A rational system of linear inequalities $Ax \leq b$ is totally dual integral (TDI) if the minimization problem in the linear programming duality:

$$\max\{c^{\top}x \colon Ax \le b\} = \min\{b^{\top}y \colon A^{\top}y = c, y \ge 0\}$$

admits an integer optimal solution for each integer vector c such that the maximum is finite. A system $Ax \leq b$ is box-totally dual integral [7] (box-TDI) if $Ax \leq b$, $\ell \leq x \leq u$ is TDI for all rational vectors ℓ and u (with possible infinite components), and box-TDI polyhedra [5] are those that can be described by a box-TDI system. TDI and box-TDI systems were introduced in the late 1970's and serve as a general framework for establishing various min-max relations in combinatorial optimization [10].

A box-perfect graph is a graph for which system (1) is box-TDI. Equivalently, a graph is box-perfect if and only if it is perfect and its stable set polytope is box-TDI. The characterization of box-perfect graphs is a longstanding open question raised by Cameron and Edmonds in 1982 [1]. Mix-max relations about box-perfect graphs are discussed in [2]. Recent progress has been made on this topic by Ding, Zang, and Zhao [6]. They exhibit several new subclasses of perfect graphs and in particular prove the conjecture of Cameron and Edmonds [1] that parity graphs are box-perfect.

The Weak Perfect Graph Theorem does not hold for box-perfect graphs, as shown by S_3 below, which is not box-perfect (see e.g. [3, Section 6.2]) but whose complement $\overline{S_3}$ is. Adding a universal vertex u^+ to this complement destroys its box-perfection, that is, $\overline{S_3}^+$ is not box-perfect. Here, G^+ denotes the graph obtained from a graph G by adding a universal vertex, which is a new vertex connected to all the vertices of G.



We prove here that this holds in general. More precisely, we prove the following.

Theorem 1. Given a graph G = (V, E), the following statements are equivalent.

- 1. Both G and \overline{G} are box-perfect,
- 2. \overline{G}^+ is box-perfect,
- 3. G^+ is box-perfect.

Our starting point builds upon recent characterizations of box-TDI polyhedra [3]. In the context of box-perfect graphs, the combination of [3, Theorem 2] and [3, Observation 4] yields Theorem 2 below, for which a few definitions are required.

A subset U of V is also viewed as the row vector $(\chi^U)^{\top}$, where $\chi^U \in \{0,1\}^V$ denotes the incidence vector of U. A set of subsets of V is then viewed as a matrix whose rows correspond to those subsets. For a set C of columns and a set R of rows of a matrix M, we denote by M^C the submatrix of M formed by the columns in C, and by M_R and the submatrix of M formed by the rows in R.

A rational $r \times n$ matrix is equimodular if it has full row rank and its nonzero $r \times r$ determinants all have the same absolute value. A face-defining pair of a graph G is a pair $(\mathcal{K}, \mathcal{S})$, where \mathcal{K} is a set of linearly independent cliques, \mathcal{S} is a set of affinely independent stable sets, each clique of \mathcal{K} intersects each stable set of \mathcal{S} , and $|\mathcal{K}| + |\mathcal{S}| = |V| + 1$. Such a pair is equimodular when the matrix whose rows are the cliques of \mathcal{K} is equimodular. Equivalently, as explained below, the matrix whose rows are $(\chi^T - \chi^S)^{\top}$, $T \in \mathcal{S} \setminus \{S\}$ is equimodular for each $S \in \mathcal{S}$.

Theorem 2. A perfect graph is box-perfect if and only if all its face-defining pairs are equimodular.

A face-defining matrix³ of a polyhedron $P = \{x : Ax \leq b\}$ is a linearly independent set A_R of rows of A such that the affine hull of some face F of P can be written $\{x : A_Rx = b_R\}$. [3, Theorem 2] asserts that a polyhedron is box-TDI if and only if all its face-defining matrices are equimodular. By [3, Observation 4], the cardinality and independence conditions on a face-defining pair $(\mathcal{K}, \mathcal{S})$ ensure that \mathcal{K} is face-defining for the stable set polytope. When the graph is perfect, the face-defining pairs encode all the face-defining matrices of system (1) without nonnegativity constraints. The fact that nonnegativity constraints need not be considered in Theorem 2 relies on the following: if $F \cap \{x \geq \mathbf{0}\}$ is not box-TDI for some face F of P, then neither is F.

We will use that a face-defining pair $(\mathcal{K}, \mathcal{S})$ is equimodular if and only if the matrix whose rows are $(\chi^T - \chi^S)^{\top}$, $T \in \mathcal{S} \setminus \{S\}$ is equimodular for each $S \in \mathcal{S}$. Indeed,

¹ At this point, $|\mathcal{K}| + |\mathcal{S}| < |V| + 1$ always holds by geometric arguments.

² Here, each can be replaced by some, see [3, Corollary 6].

³ Compared to [3], face-defining matrices here are "from the system". It is implicit therein that [3, Theorem 2] also holds under these settings.

when (K, S) is a face-defining pair, K is a face-defining matrix of the affine hull of S. By [3, Theorem 2], since the latter has only itself as a face, it is box-TDI if and only if K is equimodular. Statements 2 and 3 of [3, Corollary 6] imply the announced equivalence as the vectors $(\chi^T - \chi^S)$ for $T \in S \setminus \{S\}$ form a basis of the associated linear space, for each $S \in S$.

Note that box-perfection is preserved under taking induced subgraphs [2]. Besides, each clique in a face-defining pair can be assumed maximal, because it can be assumed maximal in system (1). We can now prove Theorem 1.

Proof of Theorem 1. Replacing G by \overline{G} shows that it is enough to prove $(2 \Rightarrow 1)$ and $(1 \Rightarrow 3)$. Moreover, G, \overline{G} , G^+ , and \overline{G}^+ are all perfect as long as one of them is, hence we just have to deal with the box-TDIness of their stable set polytopes. Let u^+ denote the universal vertex of G^+ and \overline{u}^+ that of \overline{G}^+ .

 $(2 \Rightarrow 1)$ Suppose that \overline{G}^+ is box-perfect. Then, so is $\overline{G} = \overline{G}^+ \setminus \{\overline{u}^+\}$. To prove that G is box-perfect, by Theorem 2, we show that every face-defining pair $(\mathcal{K}, \mathcal{S})$ of G is equimodular.

Each element of $\overline{\mathcal{K}} = \{S \cup \{\overline{u}^+\} : S \in \mathcal{S}\}$ is a clique of \overline{G}^+ and each element of $\overline{\mathcal{S}} = \mathcal{K} \cup \{\{\overline{u}^+\}\}$ is a stable set of \overline{G}^+ . Let us prove that $(\overline{\mathcal{K}}, \overline{\mathcal{S}})$ forms a face-defining pair of \overline{G}^+ . Firstly, $\overline{\mathcal{K}}$ is linearly independent because \mathcal{S} is affinely independent and $\overline{\mathcal{K}}$ is obtained from \mathcal{S} by adding a $\mathbf{1}$ column. Secondly, $\overline{\mathcal{S}}$ is affinely independent because it is linearly independent. Thirdly, each stable set of $\overline{\mathcal{S}}$ intersects each clique of $\overline{\mathcal{K}}$. Finally, $|\overline{\mathcal{K}}| + |\overline{\mathcal{S}}| = |V \cup \{\overline{u}^+\}| + 1$, thus $(\overline{\mathcal{K}}, \overline{\mathcal{S}})$ forms a face-defining pair of \overline{G}^+ .

By Theorem 2, $(\overline{\mathcal{K}}, \overline{\mathcal{S}})$ is equimodular, and so is the matrix whose rows are $(\chi^K - \chi^{\{\overline{u}^+\}})^{\top}$, for all $K \in \overline{\mathcal{S}} \setminus \{\{\overline{u}^+\}\}$. Removing \overline{u}^+ 's column from this matrix yields \mathcal{K} , hence $(\mathcal{K}, \mathcal{S})$ is equimodular.

 $(1 \Rightarrow 3)$ Suppose that G and \overline{G} are both box-perfect, and let $(\mathcal{K}^+, \mathcal{S}^+)$ be a face-defining pair of G^+ with r cliques in \mathcal{K}^+ . We may assume that each clique of \mathcal{K}^+ is maximal, hence each of them contains u^+ . In particular, $(\mathcal{K}^+)^{\{u^+\}} = \mathbf{1}$ and we may assume that $\{\{u^+\}\} \subseteq \mathcal{S}^+$. Let $\mathcal{K} = \{K \setminus \{u^+\}\} : K \in \mathcal{K}^+\}$ and $\mathcal{S} = \mathcal{S}^+ \setminus \{\{u^+\}\}$.

Let us prove that $(\mathcal{K}, \mathcal{S})$ forms a face-defining pair of G. In \mathcal{K}^+ , column u^+ is a linear combination of the columns of \mathcal{K} , because $\mathcal{K}\chi^S=\mathbf{1}$ for $S\in\mathcal{S}$. Thus, the linear independence of \mathcal{K}^+ implies that of \mathcal{K} . The affine independence of \mathcal{S} comes from that of \mathcal{S}^+ . Since no stable set of \mathcal{S} contains u^+ , each $S\in\mathcal{S}$ intersects each $K\in\mathcal{K}$. Finally, $|\mathcal{K}|+|\mathcal{S}|=|V|+1$. Since G is box-perfect, $(\mathcal{K},\mathcal{S})$ is equimodular by Theorem 2. Therefore, all the $r\times r$ nonzero determinants of \mathcal{K}^+ not containing column u^+ have the same absolute value.

Recall that cliques and stable sets of G are respectively stable sets and cliques of \overline{G} , and let us prove that (S, \mathcal{K}) forms a face-defining pair of \overline{G} . From the last paragraph, all that remains to show is the linear independence of S, which holds because S is affinely independent and $S\chi^K = \mathbf{1}$ for $K \in \mathcal{K}$. Since \overline{G} is box-perfect, (S, \mathcal{K}) is equimodular by Theorem 2. Therefore, for some $K \in \mathcal{K}$, so is the matrix whose rows are $(\chi^L - \chi^K)^{\top}$

for all $L \in \mathcal{K} \setminus \{K\}$. This matrix is obtained by pivoting in \mathcal{K}^+ using L's row in u^+ 's column, hence all the $r \times r$ nonzero determinants of \mathcal{K}^+ containing column u^+ have the same absolute value.

To prove that $(\mathcal{K}^+, \mathcal{S}^+)$ is equimodular, all that remains to show is that $|\det(B)| = |\det(C)|$ for some nonsingular $r \times r$ submatrices B and C of \mathcal{K}^+ with column u^+ in exactly one of them. For $S \in \mathcal{S}$, the columns of \mathcal{K}^S are linearly independent. Since \mathcal{K} has full row rank, \mathcal{K}^S can be completed into a nonsingular $r \times r$ submatrix B of \mathcal{K} . The sum of the columns of B associated with S is $\mathbf{1}$, hence replacing one of them by $\mathbf{1}$ does not change the determinant. Reordering the columns provides the desired matrix C.

The *complete join* of two graphs G and H is the graph obtained by connecting each vertex of G to each vertex of H. This operation preserves perfection, but not box-perfection. Indeed, $\overline{S_3}^+$ is not box-perfect and is the complete join of two box-perfect graphs, namely $\overline{S_3}$ and a single vertex $\{u\}$.

Corollary 3. The complete join of G and H is box-perfect if and only if both G^+ and H^+ are box-perfect.

Proof. Let J be the complete join of G and H. If J is box-perfect, then G^+ and H^+ , as induced subgraphs of J, are also box-perfect. Conversely, suppose that G^+ and H^+ are box-perfect. Equivalently, by Theorem 1, \overline{G}^+ and \overline{H}^+ are box-perfect. Note that \overline{J}^+ is the graph obtained from \overline{G}^+ and \overline{H}^+ by identifying their universal vertex u. Let us prove that \overline{J}^+ is box-perfect. Then so is J by Theorem 1, and the proof is done.

By contradiction, suppose that \overline{J}^+ is not box-perfect, and let $(\mathcal{K}, \mathcal{S})$ be a nonequimodular face-defining pair of \overline{J}^+ given by Theorem 2. We may assume that each clique of \mathcal{K} is maximal, and then u belongs to each of them. Given the structure of the graph, \mathcal{K} is composed of cliques \mathcal{K}_G and \mathcal{K}_H of respectively \overline{G}^+ and \overline{H}^+ , with $K_G \cap K_H = \{u\}$ for all $K_G \in \mathcal{K}_G$ and $K_H \in \mathcal{K}_H$. The latter implies that each nonzero $|\mathcal{K}| \times |\mathcal{K}|$ determinant of \mathcal{K} is the product of a nonzero $|\mathcal{K}_G| \times |\mathcal{K}_G|$ determinant of \mathcal{K}_G by a nonzero $|\mathcal{K}_H| \times |\mathcal{K}_H|$ determinant of \mathcal{K}_H . Since \mathcal{K} is not equimodular, at least one of \mathcal{K}_G and \mathcal{K}_H is not equimodular.

Let \mathcal{S}_G be a maximal family of affinely independent stables sets of \overline{G} distinct from $\{u\}$ and intersecting each clique of \mathcal{K}_G . Define \mathcal{S}_H similarly. Take $S_G \in \mathcal{S}_G$ and $S_H \in \mathcal{S}_H$ and let $\mathcal{S}' = \{\{u\}\} \cup \{S \cup S_H \text{ for all } S \in \mathcal{S}_G\} \cup \{S_G \cup S \text{ for all } S \in \mathcal{S}_H\}$. Given the structure of the graph, a dimensional analysis shows that $(\mathcal{K}, \mathcal{S}')$, $(\mathcal{K}_G, \{u\} \cup \mathcal{S}_G)$, and $(\mathcal{K}_H, \{u\} \cup \mathcal{S}_H)$ are respectively face-defining pairs of \overline{J}^+ , \overline{G}^+ , and \overline{H}^+ . This contradicts the fact that \overline{G}^+ and \overline{H}^+ are box-perfect.

We mention that the arguments of the last two paragraphs can be adapted to prove that a graph is box-perfect if and only if all its 2-connected components are box-perfect.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank the anonymous reviewers for their very careful reading and their valuable comments.

References

- [1] K. Cameron, Polyhedral and algorithmic ramifications of antichains, Ph.D. Thesis, University of Waterloo, 1982, Supervisor: J. Edmonds.
- [2] K. Cameron, A min-max relation for the partial q-colourings of a graph. Part II: Box perfection, Discrete Math. 74 (1) (1989) 15–27.
- [3] P. Chervet, R. Grappe, L.-H. Robert, Box-total dual integrality, box-integrality, and equimodular matrices, Math. Program. 188 (1) (2021) 319–349.
- [4] V. Chvátal, On certain polytopes associated with graphs, J. Comb. Theory, Ser. B 18 (2) (1975) 138–154.
- [5] W. Cook, On box totally dual integral polyhedra, Math. Program. 34 (1) (1986) 48–61.
- [6] G. Ding, W. Zang, Q. Zhao, On box-perfect graphs, J. Comb. Theory, Ser. B 128 (2018) 17–46.
- [7] J. Edmonds, R. Giles, A min-max relation for submodular functions on graphs, in: P. Hammer, E. Johnson, B. Korte, G. Nemhauser (Eds.), Studies in Integer Programming, in: Annals of Discrete Mathematics, vol. 1, Elsevier, 1977, pp. 185–204.
- [8] D. Fulkerson, Anti-blocking polyhedra, J. Comb. Theory, Ser. B 12 (1) (1972) 50-71.
- [9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (3) (1972) 253–267.
- [10] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, 1999.