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Gt is box-perfect. As a corollary, we characterize when the
complete join of two graphs is box-perfect.
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In a graph, a clique is a set of pairwise adjacent vertices, and a stable set is a set
of pairwise nonadjacent vertices. The stable set polytope S(G) of a graph G is the
convex hull of the incidence vectors of its stable sets. A graph G is called perfect if
w(H) = x(H) for every induced subgraph H of G, where w(H) is the clique number
and x(H) the chromatic number of H. Lovasz [9] proved the Weak Perfect Graph The-
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orem, which states that a graph G is perfect if and only if its complement G is perfect.
It is also known [4,8] that perfect graphs are the graphs whose stable set polytope is
described by the system composed of the clique inequalities and the nonnegativity con-
straints:

Z z, <1 for each maximal clique C of G,
vel (1)
x > 0.

In fact, system (1) is totally dual integral if and only if G is perfect. A rational system
of linear inequalities Az < b is totally dual integral (T'DI) if the minimization problem
in the linear programming duality:

max{c'z: Az <b} =min{b'y: ATy =c,y >0}

admits an integer optimal solution for each integer vector ¢ such that the maximum
is finite. A system Az < b is boz-totally dual integral [7] (boz-TDI) if Az < b,
¢ < x < wis TDI for all rational vectors ¢ and w (with possible infinite compo-
nents), and boz-TDI polyhedra [5] are those that can be described by a box-TDI
system. TDI and box-TDI systems were introduced in the late 1970’s and serve as a
general framework for establishing various min-max relations in combinatorial optimiza-
tion [10].

A boz-perfect graph is a graph for which system (1) is box-TDI. Equivalently, a graph
is box-perfect if and only if it is perfect and its stable set polytope is box-TDI. The cha-
racterization of box-perfect graphs is a longstanding open question raised by Cameron
and Edmonds in 1982 [1]. Mix-max relations about box-perfect graphs are discussed
in [2]. Recent progress has been made on this topic by Ding, Zang, and Zhao [6]. They
exhibit several new subclasses of perfect graphs and in particular prove the conjecture
of Cameron and Edmonds [1] that parity graphs are box-perfect.

The Weak Perfect Graph Theorem does not hold for box-perfect graphs, as shown
by S5 below, which is not box-perfect (see e.g. [3, Section 6.2]) but whose complement
Ss is. Adding a universal vertex ut to this complement destroys its box-perfection,
that is, ST; is not box-perfect. Here, G* denotes the graph obtained from a graph
G by adding a wuniversal vertex, which is a new vertex connected to all the vertices
of G.

S3 S3 Sst
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We prove here that this holds in general. More precisely, we prove the following.

Theorem 1. Given a graph G = (V, E), the following statements are equivalent.

1. Both G and G are box-perfect,
2. G is boz-perfect,
3. G7 is box-perfect.

Our starting point builds upon recent characterizations of box-TDI polyhedra [3]. In
the context of box-perfect graphs, the combination of [3, Theorem 2] and [3, Observa-
tion 4] yields Theorem 2 below, for which a few definitions are required.

A subset U of V is also viewed as the row vector (xV) T, where x¥ € {0,1}" denotes
the incidence vector of U. A set of subsets of V is then viewed as a matrix whose rows
correspond to those subsets. For a set C' of columns and a set R of rows of a matrix M,
we denote by M¢ the submatrix of M formed by the columns in C, and by Mg and the
submatrix of M formed by the rows in R.

A rational r x n matrix is equimodular if it has full row rank and its nonzero r x r
determinants all have the same absolute value. A face-defining pair of a graph G is
a pair (K, S), where K is a set of linearly independent cliques, S is a set of affinely
independent stable sets, each clique of K intersects each stable set of S, and' |K|+ |S| =
|[V| + 1. Such a pair is equimodular when the matrix whose rows are the cliques of
K is equimodular. Equivalently, as explained below, the matrix whose rows are (x? —
x2)T, T € 8\ {S} is equimodular for each” S € S.

Theorem 2. A perfect graph is box-perfect if and only if all its face-defining pairs are
equimodular.

A face-defining matriz® of a polyhedron P = {x : Az < b} is a linearly independent
set Ar of rows of A such that the affine hull of some face F of P can be written
{z : Agz = br}. [3, Theorem 2] asserts that a polyhedron is box-TDI if and only if all
its face-defining matrices are equimodular. By [3, Observation 4], the cardinality and
independence conditions on a face-defining pair (X, S) ensure that K is face-defining for
the stable set polytope. When the graph is perfect, the face-defining pairs encode all
the face-defining matrices of system (1) without nonnegativity constraints. The fact that
nonnegativity constraints need not be considered in Theorem 2 relies on the following:
if F'N{x > 0} is not box-TDI for some face F' of P, then neither is F'.

We will use that a face-defining pair (I, S) is equimodular if and only if the matrix
whose rows are (xT — x%)T, T € S\ {S} is equimodular for each S € S. Indeed,

L At this point, |K| 4+ |S| < |V]| + 1 always holds by geometric arguments.

2 Here, each can be replaced by some, see [3, Corollary 6].

3 Compared to [3], face-defining matrices here are “from the system”. It is implicit therein that [3, Theo-
rem 2] also holds under these settings.
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when (K, S) is a face-defining pair, K is a face-defining matrix of the affine hull of S. By
[3, Theorem 2], since the latter has only itself as a face, it is box-TDI if and only if K
is equimodular. Statements 2 and 3 of [3, Corollary 6] imply the announced equivalence
as the vectors (xT — x®) for T € S\ {S} form a basis of the associated linear space, for
each S € S.

Note that box-perfection is preserved under taking induced subgraphs [2]. Besides,
each clique in a face-defining pair can be assumed maximal, because it can be assumed
maximal in system (1). We can now prove Theorem 1.

Proof of Theorem 1. Replacing G by G shows that it is enough to prove (2 = 1) and
(1 = 3). Moreover, G, G, G, and G are all perfect as long as one of them is, hence
we just have to deal with the box-TDIness of their stable set polytopes. Let u™ denote
the universal vertex of G* and @+ that of G .

(2 = 1) Suppose that G'is box-perfect. Then, so is G = G’ \ {w"}. To prove that
G is box-perfect, by Theorem 2, we show that every face-defining pair (K,S) of G is
equimodular.

Each element of K = {SuU{u*} : S € S} is a clique of G and each element
of S = KU {{u"}} is a stable set of G . Let us prove that (K,S) forms a face-defining
pair of G . Firstly, K is linearly independent because S is affinely independent and K is
obtained from S by adding a 1 column. Secondly, S is affinely independent because it
is linearly independent. Thirdly, each stable set of S intersects each clique of K. Finally,
K|+ |3 = [V U {@t} + 1, thus (K, S) forms a face-defining pair of G .

By Theorem 2, (K,S) is equimodular, and so is the matrix whose rows are (x* —
X{H+})T, for all K € S\ {{u"}}. Removing %"’s column from this matrix yields &, hence
(K, S) is equimodular.

(1 = 3) Suppose that G and G are both box-perfect, and let (K, ST) be a face-defining
pair of Gt with r cliques in . We may assume that each clique of KT is maximal,
hence each of them contains ut. In particular, (X){*"} = 1 and we may assume that
{{ut}} ST . Let K={K\{uT}: Ke K"} and S =8\ {{ut}}.

Let us prove that (K,S) forms a face-defining pair of G. In KT, column u™ is a
linear combination of the columns of K, because Kx® = 1 for S € S. Thus, the linear
independence of Kt implies that of K. The affine independence of S comes from that
of S*. Since no stable set of S contains u™, each S € S intersects each K € K. Finally,
IK]+|S| = |V |+1. Since G is box-perfect, (K, S) is equimodular by Theorem 2. Therefore,
all the r xr nonzero determinants of K not containing column u™* have the same absolute
value.

Recall that cliques and stable sets of G are respectively stable sets and cliques of G,
and let us prove that (S, K) forms a face-defining pair of G. From the last paragraph, all
that remains to show is the linear independence of S, which holds because S is affinely
independent and SxX = 1 for K € K. Since G is box-perfect, (S, K) is equimodular by

Theorem 2. Therefore, for some K € K, so is the matrix whose rows are (x% — x%)T
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for all L € K\ {K}. This matrix is obtained by pivoting in Kt using L’s row in u™’s
column, hence all the r x r nonzero determinants of K containing column u™ have the
same absolute value.

To prove that (KT,S8™) is equimodular, all that remains to show is that |det(B)| =
|det(C)| for some nonsingular r x 7 submatrices B and C of Kt with column u* in
exactly one of them. For S € S, the columns of X are linearly independent. Since K
has full row rank, K can be completed into a nonsingular r x r submatrix B of /. The
sum of the columns of B associated with S is 1, hence replacing one of them by 1 does
not change the determinant. Reordering the columns provides the desired matrix C. W

The complete join of two graphs G and H is the graph obtained by connecting each
vertex of G to each vertex of H. This operation preserves perfection, but not box-
perfection. Indeed, S_3+ is not box-perfect and is the complete join of two box-perfect
graphs, namely S3 and a single vertex {u}.

Corollary 3. The complete join of G and H is box-perfect if and only if both GT and H™
are box-perfect.

Proof. Let J be the complete join of G and H. If J is box-perfect, then GT and H,
as induced subgraphs of .J, are also box-perfect. Conversely, suppose that GT and HT
are box-perfect. Equivalently, by Theorem 1, G and A are box-perfect. Note that Al
is the graph obtained from G and IH by identifying their universal vertex u. Let us
prove that T s box-perfect. Then so is J by Theorem 1, and the proof is done.

By contradiction, suppose that 7" is not box-perfect, and let (K,S) be a nonequi-
modular face-defining pair of Al given by Theorem 2. We may assume that each clique
of IC is maximal, and then u belongs to each of them. Given the structure of the graph, K
is composed of cliques g and Ky of respectively G and F+, with KN Ky = {u} for
all K¢ € Kg and Ky € K. The latter implies that each nonzero || x || determinant of
KC is the product of a nonzero |K¢g| % |K¢| determinant of K¢ by a nonzero |Kg| x |Kg|
determinant of Kg. Since K is not equimodular, at least one of g and Kgy is not
equimodular.

Let S¢ be a maximal family of affinely independent stables sets of G distinct from {u}
and intersecting each clique of Kg. Define Sy similarly. Take S¢ € Sg and Sy € Sy and
let 8" = {{u}}U{SUSy for all S € Sg}U{SgUS for all S € Sy }. Given the structure of
the graph, a dimensional analysis shows that (K,S’), (Kg, {u}USg), and (Kg, {u}USg)
are respectively face-defining pairs of 7+, @+, and 7. This contradicts the fact that G
and H ' are box-perfect. W

We mention that the arguments of the last two paragraphs can be adapted to prove
that a graph is box-perfect if and only if all its 2-connected components are box-perfect.
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