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PRINCIPALLY BOX-INTEGER POLYHEDRA

Polyhedron: Intersection of a finite number of half-spaces P = {x : Ax ≤ b}

I Integer: Each face of P contains an integer point
I Box-integer: The intersection of P with any integer box is integer
I Fully box-integer: kP is box-integer for all k ∈ Z>0

I Principally box-integer: P has a fully box-integer dilatation
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EQUIMODULAR MATRICES
FULL ROW RANK k × n MATRICES

1 1 0 -1
1 -1 1 -1
0 -1 1 0




det = +1

det = −1det = −2

det = +0det = +0

Unimodular matrix (integer):
I all k × k nonzero determinants have absolute value +1

I Equivalently: every k independent columns generate Zn

Theorem (Veinott and Dantzig – 1967)
A is unimodular if and only if {x : Ax = b} is fully box-integer for all b ∈ Zk.

Equimodular matrix (rational):
I all k × k nonzero determinants have the same absolute value

I Equivalently: every k independent columns generate lattice(A)

Theorem (Chervet, G., Robert – 2020)
A is equimodular if and only if {x : Ax = b} is principally box-integer for all b ∈ Zk.
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Theorem (Chervet, G., Robert – 2020)
A is equimodular if and only if {x : Ax = b} is principally box-integer for all b ∈ Zk.

PROOF:

(⇒) Prove that {x : Ax = b} has a fully box-integer dilatation.
I There exist ` ∈ Z>0 such that Ax = `b for some x ∈ Zn

⇒ `b ∈ lattice(A)
⇒ B−1`b is integer for all basis B of lattice(A)

I A equimodular⇒ A = [B C] with B basis of lattice(A)
I A equimodular⇒ B−1A

unimodular

g

PROOF: Take a k × k square submatrix D of B−1A

⇒ D = B−1E for some k × k submatrix E of A
⇒ |det(D)| = |det(B−1E)| = | det(E)

det(B) | = 1 or 0

I Veinott and Dantzig’s Theorem⇒ {x : B−1Ax = B−1`b} fully box-integer
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OUTLINE

EQUIMODULAR MATRICES

CHARACTERIZATIONS OF PRINCIPALLY BOX-INTEGER POLYHEDRA

BOX-TOTAL DUAL INTEGRAL POLYHEDRA

BOX-PERFECT GRAPHS



PRINCIPAL BOX-INTEGRALITY VS EQUIMODULARITY
NON BOX-INTEGER CONES

For a cone C = {x : Ax ≤ 0}: Any dilatation of C is C itself
I box-integrality⇔ full box-integrality⇔ principal box-integrality

x

y
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If the cone is NOT box-integer:

I Facet H = {x− 2y = 0}
I

{
1 × x− 2 × y = 0

}
∩ {x = 1} = (1, 1
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1 2
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PRINCIPAL BOX-INTEGRALITY VS EQUIMODULARITY
FROM CONES TO POLYHEDRA

C
minimal cones of P

P

P + r1

3P + r3C + t2

t2
C

I P = intersection of its minimal cones
I kP = intersection of integer translations of the minimal cones of P

COR If a minimal cone of P is not box-integer, then P is not principally box-integer

I C = union of integer translations of kP over k ∈ Z>0

COR If kP is not box-integer, then some minimal cone of P is not box-integer
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PRINCIPAL BOX-INTEGRALITY VS EQUIMODULARITY

Theorem (Chervet, G., Robert – 2020)
Given a polyhedron P, the following statements are equivalent:

1. P is principally box-integer
2. all its minimal cones are box-integer

3. all the face-defining matrices of P are equimodular
4. each face of P admits an equimodular face-defining matrix
5. each face of P admits a totally unimodular face-defining matrix

PROOF:
2⇔ 3 earlier slide
3⇔ 4 multilinearity of the determinant

3⇔ 5 A = [B C] equimodular with B basis of lattice(A)⇒ B−1A TU
PROOF:

B−1A = B−1 [B C] =

1 0 0 0 0 0

0 0 0 0 B−1C 0
0 0 1 0 0 0




D

E

I |det(D)| = 1 or 0
I |det(D)| = |det(E)|
⇒ |det(E)| = 1 or 0
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OUTLINE

EQUIMODULAR MATRICES

CHARACTERIZATIONS OF PRINCIPALLY BOX-INTEGER POLYHEDRA

BOX-TOTAL DUAL INTEGRAL POLYHEDRA

BOX-PERFECT GRAPHS



TOTAL DUAL INTEGRAL SYSTEMS

Ax ≤ b is Total Dual Integral (TDI) if (D) has an integer solution for all c ∈ Zn
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1
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1
k

Ax ≤

1
k

b

(D)
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1
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b>y

s.t.

1
k

A>y = c

y ≥ 0

Examples of TDI systems:
I MaxFlow-MinCut theorem, Matchings, Mengerian clutters. . .

OBS: Every polyhedron can be described by a TDI system

Theorem (Edmonds and Giles – 1977)
If Ax ≤ b is TDI and b integer, then P = {x : Ax ≤ b} is an integer polyhedron.
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BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI

I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn
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Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

max b>y + u>r − `>s

s.t. A>y + r − s = c
1
k

r, s, y ≥ 0`

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

max b>y + u>r − `>s

s.t. A>y + r − s = c
1
k

r, s, y ≥ 0`

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

max b>y + u>r − `>s

s.t. A>y + r − s = c
1
k

r, s, y ≥ 0`

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):

I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

max b>y + u>r − `>s

s.t. A>y + r − s = c
1
k

r, s, y ≥ 0`

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges

I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

max b>y + u>r − `>s

s.t. A>y + r − s = c
1
k

r, s, y ≥ 0`

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

Examples of box-TDI systems:
I MaxFlow-MinCut theorem, Polymatroids, Box-Mengerian clutters,. . .

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

OBS: NOT every polyhedron can be described by a box-TDI system

I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒

k

P box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.

1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒

k

P box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.
1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒

k

P box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.
1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒

k

P box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.
1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒ kP box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

Interpretation (for MaxFlow-MinCut):
I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA

A system Ax ≤ b is box-TDI if
I it is TDI
I it remains TDI after the addition of ` ≤ x ≤ u, for all `, u ∈ Qn

min c>x

s.t.
1
k

Ax ≤ b

` ≤ x ≤ uy

I P = {x : Ax ≤ b}, b ∈ Zm

⇒ kP = {x : 1
k Ax ≤ b}

I `, u ∈ Zn ⇒ kP box-integer

OBS: NOT every polyhedron can be described by a box-TDI system
I A polyhedron is box-TDI if it can be described by a box-TDI system

OBS: If P is a box-TDI polyhedron, then P is principally box-integer

I Primal: capacities on the edges
I Dual: buy/sell edges before finding a mincut



BOX-TOTAL DUAL INTEGRAL POLYHEDRA
NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert – 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

PROOF:
I P is box-TDI if and only if all its minimal cones are box-TDI
I A cone is box-TDI if and only if it is box-integer
I P is principally box-integer if and only if all its minimal cones are

box-integer



BOX-TOTAL DUAL INTEGRAL POLYHEDRA
NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert – 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

PROOF:
I P is box-TDI if and only if all its minimal cones are box-TDI

I A cone is box-TDI if and only if it is box-integer
I P is principally box-integer if and only if all its minimal cones are

box-integer



BOX-TOTAL DUAL INTEGRAL POLYHEDRA
NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert – 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

PROOF:
I P is box-TDI if and only if all its minimal cones are box-TDI
I A cone is box-TDI if and only if it is box-integer

I P is principally box-integer if and only if all its minimal cones are
box-integer



BOX-TOTAL DUAL INTEGRAL POLYHEDRA
NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert – 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

PROOF:
I P is box-TDI if and only if all its minimal cones are box-TDI
I A cone is box-TDI if and only if it is box-integer
I P is principally box-integer if and only if all its minimal cones are

box-integer



BOX-TOTAL DUAL INTEGRAL POLYHEDRA
NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert – 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

Corollary (Chervet, G., Robert – 2020)
Given a polyhedron P, the following statements are equivalent:

1. P is box-TDI
2. kP is box-integer whenever kP is integer
3. all the face-defining matrices of P are equimodular
4. each face of P admits an equimodular face-defining matrix
5. each face of P admits a totally unimodular face-defining matrix
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CHARACTERIZATIONS OF PRINCIPALLY BOX-INTEGER POLYHEDRA

BOX-TOTAL DUAL INTEGRAL POLYHEDRA

BOX-PERFECT GRAPHS



BOX-PERFECT GRAPHS

Perfect graphs: graphs with no induced odd or

(STABLE) x(K) ≤ 1, for all cliques K of G,

x ≥ 0

Theorem (Lovász – 1972, Chvátal – 1975)
Given a graph G, the following statements are equivalent:

1. The graph G is perfect
2. The system (STABLE) is TDI
3. The system (STABLE) describes the stable set polytope of G

Box-perfect graph: graphs for which the system (STABLE) is box-TDI

OBS: A graph is box-perfect if and only if
I it is perfect
I its stable set polytope is box-TDI

OPEN: Characterize box-perfect graphs (Cameron and Edmonds – 1982)
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