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Theorem (Chervet, G., Robert — 2020)
A is TE ifand only if {x : Ax < b} is principally box-integer for all b € Z™.
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For a cone C = {x: Ax < 0}: Any dilatation of C is C itself
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If the cone is NOT box-integer:
» FacetH = {x — 2y =0}

> {1 XXx— 2 xy:O}ﬂ{le}:(la%)
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NON BOX-INTEGER CONES

x—y+z < 0

Cone x—y < 0

xy.z =2 0

o X
=1 Facer:| L T|ly|=]0
il -1 0

z
detf:—z det =-1

y
» FaceH={x+y—-z=0}Nn{x—y=0}=>Hn{z=1}=(5,1,1)
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NON BOX-INTEGER CONES

IV IA A

xX—y+z
Cone x—y
X 9,2

NOT equimodular

> Face H={x+y—-z=0N{x—y=0t=Hn{z=1}= (1,11
» Face-defining matrix M for H if aff.space(H) = {x : Mx = d}
> Multilinearity of determinant = No equimodular face-defining matrix for H

Lemma
A cone is box-integer if and only if all its face-defining matrices are equimodular
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FrROM CONES TO POLYHEDRA

» P = intersection of its minimal cones
> kP = intersection of integer translations of the minimal cones of P

Cor If a minimal cone of P is not box-integer, then P is not principally box-integer
» C = union of integer translations of kP over k € Z,

Cor If kP is not box-integer, then some minimal cone of P is not box-integer
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Given a polyhedron P, the following statements are equivalent:
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Theorem (Chervet, G., Robert — 2020)

Given a polyhedron P, the following statements are equivalent:
1. P is principally box-integer

all its minimal cones are box-integer

all the face-defining matrices of P are equimodular

each face of P admits an equimodular face-defining matrix
each face of P admits a totally unimodular face-defining matrix

Sl A

PROOF:
2 < 3 earlier slide
3 < 4 multilinearity of the determinant
3« 5 A = [B (] equimodular with B basis of lattice(A) = B~'A TU
PROOF:
1 0 > |det(D)|=1o0r0
) B'C > |det(D)| = |det(r)]
= |det(E)|=10r0

B'A=B'[B(C]=
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TOTAL DUAL INTEGRAL SYSTEMS

Ax < b is Total Dual Integral (TDI) if (D) has an integer solution for all ¢ € Z"

min  ¢'x max b'y

P) st Ar< b (D)

s.t. ATy =c
y=0

Examples of TDI systems:
» MaxFlow-MinCut theorem, Matchings, Mengerian clutters. ..

OBs: Every polyhedron can be described by a TDI system

Theorem (Edmonds and Giles — 1977)
IfAx < bis TDIl and b integer, then P = {x : Ax < b} is an integer polyhedron.
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A system Ax < b is box-TDI if
» itis TDI
» it remains TDI after the addition of / < x < u, forall /,u € Q"

min  ¢'x
) > P={x:Ax<b},beZ"
st zAbe = kP = {x: ;Ax < b}
(<x<u » (,uc Z" = kP box-integer

OBs: NoT every polyhedron can be described by a box-TDI system
> A polyhedron is box-TDlI if it can be described by a box-TDI system

OBs: If P is a box-TDI polyhedron, then P is principally box-integer
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BOX-TOTAL DUAL INTEGRAL POLYHEDRA

NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert — 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

PROOF:
> P is box-TDI if and only if all its minimal cones are box-TDI
> A cone is box-TDlI if and only if it is box-integer

» P is principally box-integer if and only if all its minimal cones are
box-integer
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NEW CHARACTERIZATIONS

Theorem (Chervet, G., Robert — 2020)
A polyhedron P is box-TDI if and only if it is principally box-integer

Corollary (Chervet, G., Robert — 2020)

Given a polyhedron P, the following statements are equivalent:
1. P is box-TDI

kP is box-integer whenever kP is integer

all the face-defining matrices of P are equimodular

each face of P admits an equimodular face-defining matrix
each face of P admits a totally unimodular face-defining matrix

S A
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BOX-PERFECT GRAPHS
Perfect graphs: graphs with no induced odd Q or .ﬁ'

(STABLE) x(K 1, for all cliques K of G,

<
> 0

Theorem (Lovasz — 1972, Chvatal — 1975)
Given a graph G, the following statements are equivalent:
1. The graph G is perfect
2. The system (STABLE) is TDI/
3. The system (STABLE) describes the stable set polytope of G

Box-perfect graph: graphs for which the system (STABLE) is box-TDI

OBs: A graph is box-perfect if and only if
> it is perfect
> its stable set polytope is box-TDI

OPEN: Characterize box-perfect graphs (Cameron and Edmonds — 1982)
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