
2024-2025 Graph Theory

TD 7: Coloring

1 Edges and Colors

Show that if a graph G has m > 0 edges and chromatic number k, then m ≥
(
k
2

)
.

Solution:
Consider a k-coloring of G, V1, V2, . . . , Vk. We observe that for each i, j ∈ [k], i ̸= j there must exist at

least one edge with one endpoint in Vi and the other in Vj . Indeed, otherwise, Vi∪Vj is an independent set, and
we can color G with k − 1 colors, contradicting the assumption that G has chromatic number k. Therefore, G
has at least

(
k
2

)
edges.

2 Chromatic Number and Average Degree

Prove or disprove: if G is connected and has average degree d, then G can be colored with at most ⌈1 + d⌉
colors.
Solution:

The statement is false: consider a graph made up of a K5, a path on 95 vertices, and an edge connecting
them. This graph has n = 100, m = 105, therefore the average degree is 2m/n < 3. According to the claim,
the graph can be colored with 4 colors, but this is impossible, as it contains K5 as a subgraph.

NB: It is tempting to try to prove that the statement is true algorithmically as follows: G must contain a
vertex v of degree at most d, so we can first color G− v and then insert v; in the worst case v has d neighbors
with distinct colors, so it will receive color d + 1. This proof is false! The error here is that G − v could (and
probably will) have higher average degree than G, because d is a low-degree vertex, so the inductive hypothesis
may already be using too many colors in G− v. In our example, by repeatedly deleting a low-degree vertex we
end up with K5 which has average degree 4, while the orginal graph had average degree < 3.

3 Blanche Descartes Construction

We saw in class a construction due to Mycielsky that gives for each k ≥ 2 a graph with chromatic number k that
does not contain any K3 as a subgraph. We consider now a different construction, due to Blanche Descartes.
Define the sequence of graphs Di inductively as follows: D1 = K1; if Di has ni vertices, then Di+1 starts with
a set Si+1 of i(ni − 1) + 1 vertices and for each S′ ⊆ Si+1 with |S′| = ni we construct a distinct copy of Di

and place a perfect matching between S′ and this new copy.

1. Which construction is more efficient (has smaller ni), this one or the one by Mycielski? Why?

2. Prove that Di can be colored with i colors.

3. Prove that Di cannot be colored with i− 1 colors.

4. Prove that Di does not contain any C3, C4, or C5 as induced subgraphs.

Solution:
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1. Mycielski’s construction will, at each step roughly double the size of the graph, so give ni = 2O(i). In
contrast, in this construction we have that ni+1 is exponential in ni. More specifically, ni+1 contains at
least

(
ini
ni

)
vertices, which is at least ini . Hence, this construction has graphs whose size increases as a

tower of exponentials, and is therefore much less efficient.

2. The vertices of Si are an independent set, so we can assigne one color to them. The rest of Di constists
of disjoint copies of Di−1, which by inductive hypothesis can be colored with i− 1 colors.

3. Suppose that Di can be colored with i−1 colors and i is minimum (that is, Di−1 needs i−1 colors to be
colored properly). Suppose that the color that is used the largest number of times in Si is color 1 and that
it appears at least (i−1)(ni−1−1)+1

i−1 ≥ ni−1 − 1 + 1
i−1 times. Since the number of appearances of color 1

in Si is an integer, color 1 appears at least ni−1 times in Si. Let S′ ⊆ Si be a set of size ni−1 where all
vertices have color 1. Color 1 cannot be used in the copy of Di−1 which has a perfect matching to S′, so
Di−1 must be using colors {2, . . . , i− 1}, which would give a (i− 2)-coloring of Di−1, contradiction.

4. First, let us see that if Di contains no C3, then Di+1 contains no C3. In this case a C3 in Di+1 would
need to contain at least one new vertex from Si+1. It cannot contain two such vertices, as such vertices
are independent. Therefore, it must contain exactly one such vertex v. In each copy of Di−1 we have
constructed, v has at most one neighbor, so the two remaining vertices of a supposed C3 cannot be from
the same copy. However, they also cannot be from distinct copies, as there are no edges between distinct
copies.

Now, suppose that Di+1 contains a C4 or C5. The supposed cycle cannot contain more than two vertices
of Si+1, as such vertices are independent. It cannot contain exactly one vertex v ∈ Si+1, for reasons
similar to the previous paragraph, namely: if the rest of the cycle comes from a single copy of Di, then
v has degree 1 in the cycle; and if it comes from two copies and uses no other vertex of Si+1, then v is
a cut-vertex of the cycle (contradiction). If the cycle contains no vertex of Si+1, then it can be found in
Di, contradiction. Therefore, the cycle contains two vertices u, v ∈ Si+1. If the cycle has length at most
5, then it must have a common neighbor x of u, v. However, every vertex of Di+1 is adjacent to at most
one of these two vertices, since we add perfect matchings for each copy of Di we construct.

4 Colorings and Complements

Prove that for all G on n vertices we have χ(G)χ(G) ≥ n. Conclude that for all G on n vertices, χ(G) +
χ(G) ≥ 2

√
n. Give a tight example.

Solution:
We have χ(G) ≥ ω(G) = α(G). Therefore, χ(G)χ(G) ≥ α(G)χ(G) and we have seen in class that

χ(G) ≥ n
α(G) .

For the second part, if we had χ(G) + χ(G) < 2
√
n this would imply that χ(G)χ(G) < χ(G)(2

√
n −

χ(G)). If we consider the right-hand side as a function of χ(G), this is maximized when χ(G) =
√
n so we

would have χ(G)χ(G) < n, contradiction.
A tight example can be formed by taking a union of n cliques Kn, forming a graph with n2 vertices. Clearly,

χ(G) = n. The complement of this graph is a graph with n parts, each part being an independent set of size n,
so χ(G) = n.

5 Colorings and Kőnig

Suppose that G has χ(G) > k but V (G) can be partitioned into two sets X,Y such that G[X], G[Y ] are both
k-colorable. Then, there are at least k edges with one endpoint in X and the other in Y .
Solution:

Let X1, . . . , Xk and Y1, . . . , Yk be the k-colorings of G[X], G[Y ]. We form a bipartite graph with k vertices
on each side, where the vertices of the left side represent the sets Xi and the vertices on the right side represent
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the sets Yi. We place an edge between two vertices if the sets Xi, Yj have no edge connecting them, that is, if
Xi ∪ Yj is independent.

What we want to prove now is that this bipartite graph has a perfect matching whenever there are less
than k edges linking X to Y . This will lead to a contradiction as follows: each edge of the matching gives
an independent set, so we can partition all of V (G) into k color classes, contradicting the hypothesis that
χ(G) > k.

Let us then prove that if < k edges connect X to Y in G, then the bipartite graph has a perfect matching.
Equivalently, by Kőnig’s theorem, we will show that the bipartite graph does not have a vertex cover of size
k − 1. Indeed, the bipartite graph has at most k2 possible edges and each edge of G connecting X to Y
eliminates at most one edge of the bipartite graph. If G has < k edges connecting X to Y , then the bipartite
graph has ≥ k(k − 1) + 1 edges. However, each vertex of the bipartite graph has degree at most k, so can
cover at most k edges. Hence, a supposed vertex cover of size (k − 1) can only cover at most k(k − 1) edges,
contradiction.
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