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TD 6: More Matchings and Cuts

1 Two Matchings Make One

Let G = (A,B,E) be a bipartite graph. Let M1 be a matching that touches all vertices of X ⊆ A. Let M2 be
a matching that touches all vertices of Y ⊆ B. Prove that there always exists a matching M3 that touches all
vertices of X ∪ Y .
Solution:

Consider the graph formed by M1∪M2, which is a subgraph of G of maximum degree 2. Every non-trivial
connected component is either (i) an even cycle (ii) a path with an even number of vertices (iii) a path with an
odd number of vertices. (We cannot have odd cycles, as the graph is bipartite.) Furthermore, all vertices of
X ∪ Y are contained in some non-trivial connected component of this graph.

We form a matching M3 by selecting for each component of type (i) or (ii) a perfect matching inside this
component.

For each component P2k+1 of type (iii) we claim that one of the two endpoints of the path is not in X ∪ Y .
To see this, suppose without loss of generality that the first vertex p1 of the path belongs in X , therefore, if the
last vertex p2k+1 belongs in X ∪ Y , it must belong in X as well (since their distance is even). It must therefore
be the case that p1p2 ∈ M1 (p1 ∈ X so it is matched by M1) and p2kp2k+1 ∈ M1 (similarly). For every
internal vertex of the path, exactly one of its incident edges is in each of M1,M2. So, we have an even number
of edges; the first and last edge are in M1; edges alternate between M1 and M2. It is not hard to see that this
gives a contradiction.

Given that for a component of type (iii) one endpoint is not in X∪Y we select a matching in this component
that matches all other vertices except this endpoint and add it to M3. Taking the union of all matching we have
selected so far guarantees that we touch all of X ∪ Y .

2 Kőnig and Maximum Degree

Show that any bipartite graph G with m edges and maximum degree ∆ has a matching of size at least m
∆ . Is

the statement true for non-bipartite graphs?
Solution:

We will equivalently show that the size of a minimum vertex cover of G is at least m
∆ . Since the maximum

matching size is equal to the minimum vertex cover size on bipartite graphs, the claim will follow. Suppose
then that we have a vertex cover of size k < m

∆ . Each vertex of this set covers at most ∆ edges, so in total we
would cover at most k∆ < m edges, contradiction.

The statement is false for odd cycles: C2n+1 has m = 2n + 1 edges, ∆ = 2, but the maximum matching
size is n < m

∆ .

3 Connectivy and Cycles

For each k ≥ 2, show that if G is k-vertex connected and has at least 2k vertices, then G contains a cycle of
length at least 2k.
Solution:

For contradiction, suppose that the longest cycle C in G has length at most 2k − 1. Consider the vertices
of C that have a neighbor outside of C. There are at least k such vertices, otherwise deleting these vertices
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would disconnect the graph while deleting only at most k − 1 vertices, contradicting the assumption on the
k-connectivity of G. In any set of k or more vertices on a cycle of length 2k − 1 or less, there are two vertices
x, y which are consecutive in the cycle. If x, y have a common neighbor outside C, we are done as we can
insert this neighbor inside the cycle, contradicting the assumption that C is longest. Let then x′ be a neighbor
of x outside the cycle and y′ be a neighbor of y outside the cycle.

Suppose now that G−C has a path P from x′ to y′. We can construct a cycle longer than C in G as follows:
remove the edge xy and instead add the edges xx′, yy′, and the path P . This again contradicts the assumption
that C is longest.

Finally, suppose that G − C has no path from x′ to y′, therefore all paths from x′ to y′ pass through C.
By Menger’s theorem, there are k disjoint paths from x′ to y′, so there are k disjoint paths from x′ to C. Let
z1, . . . , zk be the first vertex of C from each such path. Two of these must be consecutive in the cycle C, say
z1, z2. Then, C, minus the edge z1z2, plus the paths from z1, z2 to z′ form a longer cycle, contradiction.

4 Latin Rectangles and Squares

In combinatorics, a Latin rectangle with dimensions n ×m, for n ≤ m, is a matrix with n lines, m columns,
such that every element is an integer in {1, . . . ,m}, and no element appears twice in the same row or in the
same column. A Latin square is a Latin rectangle where the number of rows is equal to the number of columns.

Prove that any Latin rectangle can be extended to a Latin square by adding m− n new rows.
Example of a Latin rectangle:  1 2 3 4 5

2 4 1 5 3
3 5 2 1 4


Example of a Latin square we can obtain from the previous rectangle by adding two rows:

1 2 3 4 5
2 4 1 5 3
3 5 2 1 4
4 3 5 2 1
5 1 4 3 2


Solution:

We prove that whenever we have a Latin rectangle with dimensions n × m, with n < m, we can always
add a row to it to obtain a Latin rectangle with dimensions (n+1)×m. Repeating this will eventually produce
a Latin square.

Construct a bipartite graph G = (A,B,E) with |A| = |B| = m. The vertices of A represent the positions
of the new row, while the vertices of B represent the values {1, . . . ,m}. We construct the edge aibj if it is
possible to place value j in position i of the new row, that is, if column i of the current rectangle does not
contain the number j.

We claim that this bipartite graph is (m−n)-regular. If we prove this, we are done, because regular bipartite
graphs have a perfect matching. If we have such a matching, for each edge aibj in the matching we write the
number j in column i of the new row and this ensures that we have correctly extended the rectangle because:
(i) since we have a matching, we have used each value exactly once in the new row (ii) in each column we have
only used values which did not already appear.

Consider then a vertex ai, representing position i in the new row. Column i contains n elements in our
current square, so the remaining m− n elements can be written in this position. Hence, ai has degree m− n.
Consider a vertex bj . Value j appears exactly once in each row of the current rectangle, hence it appears in n
distinct columns. Hence, j can be written in m− n distinct columns of the new row, hence the degree of bj is
also m− n. We conclude that the graph is regular.
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