
2024-2025 Graph Theory

TD 5: Cuts, Disjoint Paths, Line Graphs

1 Vertex vs Edge Connectivity on Cubic Graphs

Show that if G is 3-regular then κ(G) = κ′(G). Recall that κ(G) is the size of the smallest vertex cut-set and
κ′(G) the size of the smallest edge cut-set of G.
Solution:

We recall that κ′(G) ≥ κ(G) for all G, so we want to prove that κ′(G) ≤ κ(G) for 3-regular graphs.
Suppose that we have a vertex set S of size κ(G) such that G−S is disconnected and let C1, C2 be two distinct
connected components of G−S. If a vertex x ∈ S has no neighbor in C1, then S\{x} is still a vertex separator,
contradicting the assumption that |S| = κ(G). Therefore, all x ∈ S have at least one edge connecting them to
C1, and similarly at least one edge connecting them to C2. We construct an edge separator S′ as follows: for
each x ∈ S that has a unique edge e connecting x to C1, we place e in S′; for each remaining x ∈ S, there exist
two edges connecting x to C1, therefore a unique e connecting x to C2, so we place e in S′.

It is clear that |S′| = κ, as we have included in S′ one edge for each vertex of S. To see that in G−S′ there
is no path from C1 to C2, observe that any such path must at some point exit C1 and enter S. Suppose x ∈ S is
the vertex of such a path immediately following the last vertex of C1. Then, since the edge connecting x to C1

is still in G − S′, we know that x has another edge to C1 and degree exactly 2 if G − S′. Therefore, the path
must continue to C1, contradicting the selection of x.

Note that in the above we may assume without loss of generality that κ(G) ≤ 2. Indeed, if κ(G) ≥ 3,
since we have κ ≤ κ′ ≤ δ = 3, we immediately get κ′ = 3. So even though we did not make any explicit
assumptions about the size of S above, actually we only need to consider two cases: G has a cut vertex and G
has a vertex cut of size 2.

2 Connectivity, Diameter, Graph size

Suppose that a graph G has diameter d and vertex-connectivity κ. Show that n ≥ κ(d− 1) + 2.
Solution:

Take two vertices s, t which are at distance d in G. By Menger’s theorem, there exists κ vertex disjoint
paths from s to t. All such paths have length at least d, therefore contain at least d− 1 internal vertices. Hence,
the internal vertices of these paths are at least κ(d− 1) and adding s, t gives the bound on n.

3 Minimum Degree and Connectivity

Show that if in a graph G we have that all vertices have degree at least δ ≥ n−1
2 , then G is connected. Further-

more, for all k ≥ 1, if δ ≥ n+k−2
2 , then G is k-vertex-connected.

Solution:
The proof is essentially the same in both cases, so we prove the stronger statement. Let x, y be two vertices

of G which are not adjacent. Then |N(x)∩N(y)| = |N(x)|+|N(y)|−|N(x)∪N(y)| ≥ n+k−2−(n−2) ≥ k.
Hence, since any vertex xy-separator must contain all common neighbors of x, y, any such separator must have
size at least k.
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4 Fans and Cycles

Let G = (V,E) be a graph, k an integer, x ∈ V a vertex and U ⊆ V a set of vertices of size at least k. We
say that G has a k-fan from x to U if there exist k paths from x to U which are vertex-disjoint except for x.
Observe that, without loss of generality, we may assume that each such path has one endpoint in x, the other in
U , and all other vertices in V \ (U ∪ {x}).

1. Show that if a graph G = (V,E) is k-vertex connected, then for all x ∈ V and U ⊆ V \ {x} with
|U | ≥ k there exists a k-fan from x to U .

2. Show that if G = (V,E) is k-vertex connected (with k ≥ 2), then for all v1, v2, . . . , vk there exists a
simple cycle that passes through all vi, i ∈ [k] (in some order).

Solution:
For the first item, we add to the graph a new vertex x′ and make it adjacent to all of U . We claim that the

new graph is still k-vertex connected and in particular, it is impossible to separate x from x′ by deleting k − 1
vertices. If this is true, by Menger’s theorem, there are k vertex-disjoint x → x′ paths, which means there is
a k-fan from x to U . To see that in the new graph we cannot disconnect x from x′ by deleting k − 1 vertices,
observe that after we remove at most k − 1 vertices, the graph will always still contain some vertex u ∈ U
(because |U | ≥ k), which will be adjacent to x′. Hence, to disconnect x from x′ we would need to disconnect
x from u ∈ U while removing k − 1 vertices, which would contradict the hypothesis that G is k-connected.

For the second item, we proceed by induction on k. For k = 2 the claim follows from Menger’s theorem:
for any x1, x2, there are two vertex-disjoint paths x1 → x2, so their union is a cycle containing x1, x2.

Suppose the statement holds for k − 1 and we want to prove it for k. Since G is k-connected, it is also
(k− 1)-connected, therefore by inductive hypothesis there is a cycle going through x1, . . . , xk−1. Let U be the
vertices of this cycle. If |U | ≥ k, then by the previous statement, there is a k-fan from xk to U in G. We can
partition the cycle contained in U that passes through x1, . . . , xk−1 into k − 1 intervals, each interval being a
maximal sub-path of the cycle whose endpoints are from {x1, . . . , xk−1} and whose internal vertices (if any)
are not. The k-fan guarantees that there is such an interval I with the property that there are 2 vertex-disjoint
paths from xk to I . We can therefore “insert” xk in the cycle inside the interval I to obtain a cycle passing
through all k vertices. If |U | < k, then U contains exactly the vertices x1, . . . , xk−1 and nothing else. We now
observe that there is a (k − 1)-fan from xk to U , therefore, there are vertex-disjoint paths from xk to all the
k − 1 vertices of U . This again allows us to insert xk between two consecutive vertices of the cycle.

5 Line Graphs

Recall that for a graph G = (V,E), the line graph L(G) is defined as follows: the set of vertices of L(G) is
E (that is, L(G) has a vertex for each edge of G), and for each e1, e2 ∈ E we have that e1, e2 are adjacent in
L(G) if and only if the edges e1, e2 share an endpoint in G.

1. What is L(Pn) and L(Cn)?

2. Show that if G1, G2 are isomorphic, then L(G1), L(G2) are isomorphic.

3. Show that the converse is not true, by demonstrating two non-isomorphic four-vertex graphs G1, G2 such
that L(G1) is isomorphic to L(G2).

4. Show that the converse is, however, true, for all pairs of connected graphs except the specific example
you found in the previous question.

Solution:

1. L(Pn) = Pn−1 and L(Cn) = Cn.
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2. Suppose there is a bijective function ϕ : V1 → V2 such that uv ∈ E1 ⇔ ϕ(u)ϕ(v) ∈ E2. We construct a
function ϕ′ : E1 → E2 as follows: for each e = uv ∈ E1 we set ϕ′(uv) = ϕ(u)ϕ(v). We observe that:

• The image of ϕ′ is indeed E2, that is, when uv ∈ E1, then ϕ′(uv) ∈ E2. This follows from the
properties of ϕ.

• ϕ′ is one-to-one. Indeed, for two distinct edges e1 = v1v2 ∈ E1 and e2 = u1u2 ∈ E1, suppose
without loss of generality that v1 ̸= u1. We can then see that ϕ′(e1) = ϕ(v1)ϕ(v2) ̸= ϕ′(e2) =
ϕ(u1)ϕ(u2), because ϕ is one-to-one, so v1 ̸= u1 ⇒ ϕ(v1) ̸= ϕ(u1).

• Because ϕ′ is one-to-one, and |E1| = |E2|, we have that ϕ′ is onto, that is, ϕ′ is a bijection.

• Finally, suppose that e1, e2 ∈ E1 share an endpoint, say u. Then ϕ′(e1), ϕ
′(e2) will also share an

endpoint, namely ϕ(u). Conversely, suppose that e′1, e
′
2 ∈ E2 share an endpoint, say e′1 = v1v2

and e′2 = v1v3 and we have ϕ′(e1) = e′1 and ϕ′(e2) = e′2 for some e1, e2 ∈ E1. We claim that
in this case e1, e2 also share an endpoint. Indeed, if this were not the case, then e′1, e

′
2 would not

share v1 as an endpoint, because ϕ is one-to-one, so it cannot map four distinct vertices to the set
{v1, v2, v3}.

3. K3 and K1,3 are non-isomorphic, but their line graphs are both K3.

4. Suppose we have an isomorphism ϕ′ from L(G1) to L(G2), G1, G2 are connected and have at least 5
vertices (the case of at most 4 vertices can easily be handled by considering all graphs). Furthermore,
suppose that both G1, G2 contains at least one vertex of degree at least 3 (because otherwise, one of the
two graphs is a path or a cycle, and the claim is easy to see). We want to construct an isomorphism ϕ
from G1 to G2.

The key idea now is that the edges of K1,3 subgraphs of G1 must be mapped to the edges of K1,3

subgraphs of G2 (in particular, a K1,3 cannot be mapped to a K3). Suppose that we have three edges
e1, e2, e3 ∈ E1 which share an endpoint, v, and let e′1 = ϕ′(e1), e

′
2 = ϕ′(e2), e

′
3 = ϕ′(e3). We want to

claim that e′1, e
′
2, e

′
3 also share an endpoint, so suppose for contradiction that this is not the case. However,

since e′1, e
′
2 share an endpoint, if e′3 does not also share this endpoint it must be touching the other two

endpoints of e′1, e
′
2, that is, e′1, e

′
2, e

′
3 must form a K3. Now, consider a fourth edge e4 ∈ E1 which shares

an endpoint with at least one of e1, e2, e3. Such an edge must exist, because G1 has at least 5 vertices
and is connected. We observe that e4 either shares an endpoint with all three of e1, e2, e3 or with exactly
one. However, ϕ′(e4) can only share an endpoint with exactly 2 of e′1, e

′
2, e

′
3, contradiction.

Given the previous observation, we now see that, if we denote for v ∈ V (G1) by E(v) the set of edges of
G1 incident on v, then ϕ′ bijectively maps E(v) to E(v′) for a unique vertex v′ ∈ V (G2). Indeed, if v has
degree at least 3, suppose its incident edges are e1, e2, . . . , ek. By the claim of the previous paragraph, ϕ′

maps e1, e2, e3 to three edges with a common endpoint, say v′. Furthermore, it maps e2, e3, e4 to three
edges with a common endpoint, which must therefore still be v′. Continuing in this way, all edges of
E(v) are injectively mapped to the edges incident on E(v′). Furthermore, if there is an edge e′ ∈ E(v′)
that is not the image of an edge in E(v), we have a contradiction, as e′ shares an endpoint with all edges
of E(v′), therefore its pre-image must share an endpoint with all edges of E(v), therefore the pre-image
of e′ must be incident on v. For vertices of degree 2, it is clear that the two edges e1, e2 incident on v
must be mapped on two edges with a common endpoint v′. Finally, for vertices v with degree 1, the
neighbor u of v must have degree at least 2, and since the edges of E(v) are mapped to some E(v′), the
edge vu is mapped to an edge incident on a leaf of G2. We can therefore extract a one-to-one mapping
of vertices of G1 to vertices of G2 by defining that ϕ(v) = v′ if and only if ϕ′ maps E(v) to E(v′).
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