TD 5: Cuts, Disjoint Paths, Line Graphs

1 Vertex vs Edge Connectivity on Cubic Graphs

Show that if G is 3-regular then $\kappa(G) = \kappa'(G)$. Recall that $\kappa(G)$ is the size of the smallest vertex cut-set and $\kappa'(G)$ the size of the smallest edge cut-set of G.

Solution:

We recall that $\kappa'(G) \geq \kappa(G)$ for all G, so we want to prove that $\kappa'(G) \leq \kappa(G)$ for 3-regular graphs. Suppose that we have a vertex set S of size $\kappa(G)$ such that $G-S$ is disconnected and let C_1, C_2 be two distinct connected components of $G-S$. If a vertex $x \in S$ has no neighbor in C_1 , then $S \setminus \{x\}$ is still a vertex separator, contradicting the assumption that $|S| = \kappa(G)$. Therefore, all $x \in S$ have at least one edge connecting them to C_1 , and similarly at least one edge connecting them to C_2 . We construct an edge separator S' as follows: for each $x \in S$ that has a unique edge e connecting x to C_1 , we place e in S'; for each remaining $x \in S$, there exist two edges connecting x to C_1 , therefore a unique e connecting x to C_2 , so we place e in S'.

It is clear that $|S'| = \kappa$, as we have included in S' one edge for each vertex of S. To see that in $G - S'$ there is no path from C_1 to C_2 , observe that any such path must at some point exit C_1 and enter S. Suppose $x \in S$ is the vertex of such a path immediately following the last vertex of C_1 . Then, since the edge connecting x to C_1 is still in $G - S'$, we know that x has another edge to C_1 and degree exactly 2 if $G - S'$. Therefore, the path must continue to C_1 , contradicting the selection of x.

Note that in the above we may assume without loss of generality that $\kappa(G) \leq 2$. Indeed, if $\kappa(G) \geq 3$, since we have $\kappa \leq \kappa' \leq \delta = 3$, we immediately get $\kappa' = 3$. So even though we did not make any explicit assumptions about the size of S above, actually we only need to consider two cases: G has a cut vertex and G has a vertex cut of size 2.

2 Connectivity, Diameter, Graph size

Suppose that a graph G has diameter d and vertex-connectivity κ . Show that $n \geq \kappa(d-1) + 2$. Solution:

Take two vertices s, t which are at distance d in G. By Menger's theorem, there exists κ vertex disjoint paths from s to t. All such paths have length at least d, therefore contain at least $d-1$ internal vertices. Hence, the internal vertices of these paths are at least $\kappa(d-1)$ and adding s, t gives the bound on n.

3 Minimum Degree and Connectivity

Show that if in a graph G we have that all vertices have degree at least $\delta \geq \frac{n-1}{2}$ $\frac{-1}{2}$, then G is connected. Furthermore, for all $k \geq 1$, if $\delta \geq \frac{n+k-2}{2}$ $\frac{k-2}{2}$, then G is k-vertex-connected. Solution:

The proof is essentially the same in both cases, so we prove the stronger statement. Let x, y be two vertices of G which are not adjacent. Then $|N(x) \cap N(y)| = |N(x)|+|N(y)|-|N(x) \cup N(y)| \ge n+k-2-(n-2) \ge k$. Hence, since any vertex xy -separator must contain all common neighbors of x, y , any such separator must have size at least k.

4 Fans and Cycles

Let $G = (V, E)$ be a graph, k an integer, $x \in V$ a vertex and $U \subseteq V$ a set of vertices of size at least k. We say that G has a k-fan from x to U if there exist k paths from x to U which are vertex-disjoint except for x. Observe that, without loss of generality, we may assume that each such path has one endpoint in x , the other in U, and all other vertices in $V \setminus (U \cup \{x\})$.

- 1. Show that if a graph $G = (V, E)$ is k-vertex connected, then for all $x \in V$ and $U \subseteq V \setminus \{x\}$ with $|U| \geq k$ there exists a k-fan from x to U.
- 2. Show that if $G = (V, E)$ is k-vertex connected (with $k \ge 2$), then for all v_1, v_2, \ldots, v_k there exists a simple cycle that passes through all v_i , $i \in [k]$ (in some order).

Solution:

For the first item, we add to the graph a new vertex x' and make it adjacent to all of U. We claim that the new graph is still k-vertex connected and in particular, it is impossible to separate x from x' by deleting $k - 1$ vertices. If this is true, by Menger's theorem, there are k vertex-disjoint $x \to x'$ paths, which means there is a k-fan from x to U. To see that in the new graph we cannot disconnect x from x' by deleting $k - 1$ vertices, observe that after we remove at most $k - 1$ vertices, the graph will always still contain some vertex $u \in U$ (because $|U| \geq k$), which will be adjacent to x'. Hence, to disconnect x from x' we would need to disconnect x from $u \in U$ while removing $k - 1$ vertices, which would contradict the hypothesis that G is k-connected.

For the second item, we proceed by induction on k. For $k = 2$ the claim follows from Menger's theorem: for any x_1, x_2 , there are two vertex-disjoint paths $x_1 \rightarrow x_2$, so their union is a cycle containing x_1, x_2 .

Suppose the statement holds for $k - 1$ and we want to prove it for k. Since G is k-connected, it is also $(k-1)$ -connected, therefore by inductive hypothesis there is a cycle going through x_1, \ldots, x_{k-1} . Let U be the vertices of this cycle. If $|U| \geq k$, then by the previous statement, there is a k-fan from x_k to U in G. We can partition the cycle contained in U that passes through x_1, \ldots, x_{k-1} into $k-1$ intervals, each interval being a maximal sub-path of the cycle whose endpoints are from $\{x_1, \ldots, x_{k-1}\}$ and whose internal vertices (if any) are not. The k -fan guarantees that there is such an interval I with the property that there are 2 vertex-disjoint paths from x_k to I. We can therefore "insert" x_k in the cycle inside the interval I to obtain a cycle passing through all k vertices. If $|U| < k$, then U contains exactly the vertices x_1, \ldots, x_{k-1} and nothing else. We now observe that there is a $(k - 1)$ -fan from x_k to U, therefore, there are vertex-disjoint paths from x_k to all the $k-1$ vertices of U. This again allows us to insert x_k between two consecutive vertices of the cycle.

5 Line Graphs

Recall that for a graph $G = (V, E)$, the line graph $L(G)$ is defined as follows: the set of vertices of $L(G)$ is E (that is, $L(G)$ has a vertex for each edge of G), and for each $e_1, e_2 \in E$ we have that e_1, e_2 are adjacent in $L(G)$ if and only if the edges e_1, e_2 share an endpoint in G.

- 1. What is $L(P_n)$ and $L(C_n)$?
- 2. Show that if G_1, G_2 are isomorphic, then $L(G_1), L(G_2)$ are isomorphic.
- 3. Show that the converse is not true, by demonstrating two non-isomorphic four-vertex graphs G_1, G_2 such that $L(G_1)$ is isomorphic to $L(G_2)$.
- 4. Show that the converse is, however, true, for all pairs of connected graphs except the specific example you found in the previous question.

Solution:

1. $L(P_n) = P_{n-1}$ and $L(C_n) = C_n$.

- 2. Suppose there is a bijective function $\phi: V_1 \to V_2$ such that $uv \in E_1 \Leftrightarrow \phi(u)\phi(v) \in E_2$. We construct a function $\phi': E_1 \to E_2$ as follows: for each $e = uv \in E_1$ we set $\phi'(uv) = \phi(u)\phi(v)$. We observe that:
	- The image of ϕ' is indeed E_2 , that is, when $uv \in E_1$, then $\phi'(uv) \in E_2$. This follows from the properties of ϕ .
	- ϕ' is one-to-one. Indeed, for two distinct edges $e_1 = v_1v_2 \in E_1$ and $e_2 = u_1u_2 \in E_1$, suppose without loss of generality that $v_1 \neq u_1$. We can then see that $\phi'(e_1) = \phi(v_1)\phi(v_2) \neq \phi'(e_2)$ $\phi(u_1)\phi(u_2)$, because ϕ is one-to-one, so $v_1 \neq u_1 \Rightarrow \phi(v_1) \neq \phi(u_1)$.
	- Because ϕ' is one-to-one, and $|E_1| = |E_2|$, we have that ϕ' is onto, that is, ϕ' is a bijection.
	- Finally, suppose that $e_1, e_2 \in E_1$ share an endpoint, say u. Then $\phi'(e_1), \phi'(e_2)$ will also share an endpoint, namely $\phi(u)$. Conversely, suppose that $e'_1, e'_2 \in E_2$ share an endpoint, say $e'_1 = v_1v_2$ and $e'_2 = v_1v_3$ and we have $\phi'(e_1) = e'_1$ and $\phi'(e_2) = e'_2$ for some $e_1, e_2 \in E_1$. We claim that in this case e_1, e_2 also share an endpoint. Indeed, if this were not the case, then e'_1, e'_2 would not share v_1 as an endpoint, because ϕ is one-to-one, so it cannot map four distinct vertices to the set $\{v_1, v_2, v_3\}.$
- 3. K_3 and $K_{1,3}$ are non-isomorphic, but their line graphs are both K_3 .
- 4. Suppose we have an isomorphism ϕ' from $L(G_1)$ to $L(G_2)$, G_1 , G_2 are connected and have at least 5 vertices (the case of at most 4 vertices can easily be handled by considering all graphs). Furthermore, suppose that both G_1, G_2 contains at least one vertex of degree at least 3 (because otherwise, one of the two graphs is a path or a cycle, and the claim is easy to see). We want to construct an isomorphism ϕ from G_1 to G_2 .

The key idea now is that the edges of $K_{1,3}$ subgraphs of G_1 must be mapped to the edges of $K_{1,3}$ subgraphs of G_2 (in particular, a $K_{1,3}$ cannot be mapped to a K_3). Suppose that we have three edges $e_1, e_2, e_3 \in E_1$ which share an endpoint, v, and let $e'_1 = \phi'(e_1), e'_2 = \phi'(e_2), e'_3 = \phi'(e_3)$. We want to claim that e'_1, e'_2, e'_3 also share an endpoint, so suppose for contradiction that this is not the case. However, since e'_1, e'_2 share an endpoint, if e'_3 does not also share this endpoint it must be touching the other two endpoints of e'_1, e'_2 , that is, e'_1, e'_2, e'_3 must form a K_3 . Now, consider a fourth edge $e_4 \in E_1$ which shares an endpoint with at least one of e_1, e_2, e_3 . Such an edge must exist, because G_1 has at least 5 vertices and is connected. We observe that e_4 either shares an endpoint with all three of e_1, e_2, e_3 or with exactly one. However, $\phi'(e_4)$ can only share an endpoint with exactly 2 of e'_1, e'_2, e'_3 , contradiction.

Given the previous observation, we now see that, if we denote for $v \in V(G_1)$ by $E(v)$ the set of edges of G_1 incident on v, then ϕ' bijectively maps $E(v)$ to $E(v')$ for a unique vertex $v' \in V(G_2)$. Indeed, if v has degree at least 3, suppose its incident edges are e_1, e_2, \ldots, e_k . By the claim of the previous paragraph, ϕ' maps e_1, e_2, e_3 to three edges with a common endpoint, say v'. Furthermore, it maps e_2, e_3, e_4 to three edges with a common endpoint, which must therefore still be v' . Continuing in this way, all edges of $E(v)$ are injectively mapped to the edges incident on $E(v')$. Furthermore, if there is an edge $e' \in E(v')$ that is not the image of an edge in $E(v)$, we have a contradiction, as e' shares an endpoint with all edges of $E(v')$, therefore its pre-image must share an endpoint with all edges of $E(v)$, therefore the pre-image of e' must be incident on v. For vertices of degree 2, it is clear that the two edges e_1, e_2 incident on v must be mapped on two edges with a common endpoint v' . Finally, for vertices v with degree 1, the neighbor u of v must have degree at least 2, and since the edges of $E(v)$ are mapped to some $E(v')$, the edge vu is mapped to an edge incident on a leaf of G_2 . We can therefore extract a one-to-one mapping of vertices of G_1 to vertices of G_2 by defining that $\phi(v) = v'$ if and only if ϕ' maps $E(v)$ to $E(v')$.