
2024-2025 Graph Theory

TD 4: More Trees, Bipartite Graphs, Connectivity

1 Vertices, Edges, Components

Prove that all graphs with n vertices, m edges, and c connected components satisfy the inequality n ≤ m+ c.
Solution:

We first prove the statement for connected graphs, that is, for c = 1. In this case we must show that
n ≤ m + 1. We do this by induction on n + m. If n ≤ 2,m ≤ 1, the inequality is easy to see. Suppose we
have proved the inequality for smaller values of n+m and we are given a connected graph G on n vertices and
m edges. We have two cases:

1. G contains a cycle. Let e be an edge of this cycle. Then, G − e is connected and has m − 1 edges. By
inductive hypothesis on G− e we have n ≤ (m− 1) + 1 so n ≤ m+ 1 as desired.

2. G does not contain any cycle. Find the longest path P on G and suppose that a, b are its endpoints. We
observe that a is adjacent to exactly one vertex of P (otherwise we would have a cycle). Furthermore, a
cannot have any neighbor x which is not contained in P , otherwise the path from x to b going through
a would be longer than P . We conclude that a has degree 1. Remove from the graph a and its incident
edge, to obtain G′, which has n−1 vertices and m−1 edges. By inductive hypothesis we have (n−1) ≤
(m− 1) + 1 ⇒ n ≤ m+ 1 as desired.

We have now established the statement for c = 1. Consider then a disconnected graph G with c > 1
components C1, C2, . . . , Cc, where each component Ci has ni vertices and mi edges. By the statement for
connected graphs we have ni ≤ mi+1 for all i ∈ {1, . . . , c}. So

∑
i∈{1,...,c} ni ≤

∑
i∈{1,...,c}(mi+1) ⇒ n ≤

m+ c.

2 Average degrees and Trees

Prove that the average degree of a connected graph G is strictly less than 2, if and only if G is a tree.
Solution:

G is a tree ⇒ G is connected and the average degree is strictly less than 2:
If G is a tree and G has n vertices, then G has m = n − 1 edges. The average degree is

∑
v∈V deg(v)

n =
2m
n = 2n−2

n < 2.
G is a tree ⇐ G is connected and the average degree is strictly less than 2:
If G is acyclic, since G is connected, then G is a tree and there is nothing to prove. Suppose then that G

has a cycle and let e be an edge of the cycle, so G − e is also connected. Therefore, by the previous exercise,
(m − 1) ≥ n − 1, because G − e has m − 1 edges and is connected. But then, m ≥ n, which implies than∑

v∈V deg(v)

n = 2m
n ≥ 2, contradicting the assumption on the average degree of G.

3 Degrees and Bipartite Graphs

Let δ(G) denote the minimum degree of a graph G and ∆(G) denote the maximum degree of G. Does there
exist a bipartite graph with δ(G) + ∆(G) > n? Does there exist a bipartite graph with δ(G) + ∆(G) = n?
What is the maximum value of δ(G) + ∆(G) for non-bipartite graphs?
Solution:
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Suppose there exists bipartite G = (A,B,E) with |A| + |B| = n such that δ(G) + ∆(G) > n. Assume
without loss of generality that |A| ≤ |B|. We now observe that ∆ ≤ |B|, because for all v ∈ V we have either
N(v) ⊆ A or N(v) ⊆ B, so deg(v) ≤ |N(v)| ≤ |B|. Furthermore, δ ≤ |A|, because for a vertex v ∈ B we
have N(v) ⊆ A. Hence, δ +∆ ≤ |A|+ |B| = n.

The bipartite graph Kn,m has δ +∆ = n+m = |V (Kn,m|.
In general graphs that maximum value of δ + ∆ is 2n − 2. This is achieved by a clique Kn. That δ + ∆

cannot attain a higher value is obvious, as the maximum degree is always at most n− 1.

4 Undirected Geography

Two people, Alice and Bob, play the following game on a graph G. Starting with Alice, the players alternate
and at each round, the current player selects a vertex that has not been selected before and that is adjacent to
the last selected vertex. The first player who is unable to find such a vertex loses.

Show that Alice has a winning strategy in this game if and only if G has no perfect matching.
Note: this game is called Geography, because it (supposedly) derives from the following children’s game:

Alice names a city (e.g. Athens) and then Bob is supposed to respond with a city whose name begins with the
last letter of Alice’s city and has not been mentioned before (e.g. Sparta). Alice then continues with another
city that obeys the same restriction (e.g. Amsterdam), and the first player unable to come up with a new legal
city loses. Why is the game above not a faithful model for the children’s game?
Solution:

G has no perfect matching ⇒ Alice wins:
Let M be a maximum matching of G and v1 be a vertex unmatched by M . Alice begins with vertex v1. We

observe that Bob must respond with a vertex v2 that is matched by M , because he is forced to have v1v2 ∈ E
and if v2 is unmatched, then M ∪{v1v2} would be a larger matching. Since v2 is matched, Alice responds with
vertex v3 such that v2v3 ∈ M .

We now claim the following invariant: at move 2i, Bob is forced to play a vertex v2i that is matched by M ,
following an edge v2i−1v2i ̸∈ M , and such that the neighbor of v2i in M has not yet been played. If this holds,
then Alice can respond with the vertex v2i+1 such that v2iv2i+1 ∈ M . This maintains the invariant because: (i)
Bob is then forced to follow another edge incident on v2i+1, hence an edge e not in the matching (ii) if the other
endpoint of e is unmatched, the path from the original vertex v1 to this new vertex would be an augmenting
path, contradicting the assumption that M is maximum (iii) Alice’s strategy ensures that as soon as a matched
vertex is played by Bob she immediately responds with its match, so when Bob plays each edge of M has either
both of its endpoints available or none. Hence, Alice wins, because for each move of Bob she has a response.

G has no perfect matching ⇐ Alice wins:
We prove equivalently that if G has a perfect matching, then Bob has a winning strategy. Let M be the

perfect matching and suppose that Alice first plays v1. Bob responds with the neighbor of v1 in the matching
M , which must exist as M is perfect. Maintaining this strategy, whenever it is Bob’s turn to play at round 2i we
know that in the first 2i− 2 round we have played both endpoints of (i− 1) edges of the matching, and Alice
has just played a vertex v2i−1; Bob then responds by playing the neighbor of v2i−1 in M . Since Bob always
has a valid response, the game must end with Alice losing.

This game is not a faithful representation of the original Geography, because the graph is undirected, while
in the original game Athens→Seoul is valid and Seoul→Athens is not. To more accurately capture the game
we would need a directed graph. It is important to note that this would have a huge impact on the problem’s
complexity. On undirected graphs, it is polynomial-time solvable to decide which player has a winning strategy
(by deciding if G has a perfect matching). For directed graphs, the problem is PSPACE-complete (this means,
not solvable in polynomial time, unless very strange things happen, including P=NP).

5 Tree Degree Sequences

Show that a sequence (d1, . . . , dn) of positive integers is the degree sequence of a tree if and only if
∑

i∈{1,...,n} di =
2(n− 1).
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Solution:
(Note: in this exercise we will assume, to ease presentation, that the degree sequences are not necessarily
sorted.)

(d1, . . . , dn) is the degree sequence of a tree ⇒
∑

i di = 2(n− 1): this follows from the fact that for a tree
m = n− 1 and the sum of the degrees is 2m.

(d1, . . . , dn) is the degree sequence of a tree ⇐
∑

i di = 2(n− 1):
We prove the claim by induction on n. For n = 1 the claim is vacuous, and for n = 2 the only possible

sequence is (1, 1), which is indeed the sequence of a tree (K2). Suppose that the statement holds for smaller
n and we have a sequence (d1, . . . , dn). We claim that there must exist di in this sequence such that di = 1.
Indeed, since all elements are positive, if for all i we have di ≥ 2, then

∑
i di ≥ 2n, contradiction. Suppose

then, without loss of generality, that dn = 1. We also claim that there must exist dj ≥ 2 as otherwise, all
elements are equal to 1 and

∑
i di = n < 2(n − 1) for n ≥ 3. Suppose without loss of generality that

dn−1 ≥ 2. Consider then the sequence (d1, . . . , dn−2, dn−1 − 1). All its elements are positive and its sum is
equal to (

∑
i∈{1,...,n−1} di)− 1 = (

∑
i∈{1,...,n} di)− 2 = 2(n− 1)− 2 = 2(n− 2). By inductive hypothesis,

there exists a tree with the new degree sequence, one of whose vertices has degree dn−1 − 1. Attach to this
vertex a new leaf, to obtain a tree with the original degree sequence.
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