
2024-2025 Graph Theory

TD 12: Revision

1 Outerplanar Graphs and Kuratowski

Show that a graph G is outerplanar if and only if G contains no subgraph that is a subdivision of K4 or K2,3.
(For the definition of outerplanar graphs see the TD on planar graphs).
Solution:

One direction is easy: we have already proved that outerplanar graphs have at most 2n − 3 edges. For K4

we have 6 edges but 2n−3 = 5. Similarly, bipartite outerplanar graphs have at most 3n
2 −2 edges, as all cycles

have length at least 4, but K2,3 has 6 edges and 3n
2 − 2 = 5.5. Since these graphs are not outerplanar, their

sub-divisions are also not outerplanar, so no outerplanar graph can contain them.
The converse direction is more interesting. Suppose that G is connected and contains neither K4 nor K2,3

but is not outerplanar and among all such graphs take a minimal counter-example. We can assume that G has
no cut vertex. Indeed, if G−v is disconnected, let C1, C2, . . . , Ck be the components of G−v and G′

1, . . . , G
′
k

be G[Ci ∪ {v}]. Each such graph (i) contains no K4 or K2,3 (ii) is therefore outerplanar by the minimality of
G (iii) therefore we can obtain an outerplanar drawing of G by gluing the outerplanar drawings of each G′

i,
contradiction.

We also conclude that G is planar, by Kuratowski’s theorem, as G contains neither K5 nor K3,3 (if it did, it
would contain a K4 or K2,3 respectively). Take a planar drawing of G that has a maximum number of vertices
on the outer face. Let C be a cycle on the outer face obtained by repeatedly removing degree 1 vertices lying
on the outer face.

Let v be a vertex not on the outer face. If there are three vertex-disjoint paths from v to C, the graph
contains a sub-divided K1,4 as a subgraph: let x1, x2, x3 be the endpoints of the paths in C and we keep in the
graph the edges of the three paths plus the edges of C. We therefore assume in the remainder that all vertices
in the inside have at most two vertex-disjoint paths to C. Since the graph has no cut vertex, all vertices in the
inside have exactly 2 disjoint paths to C.

If v has exactly 2 vertex-disjoint paths to C we distinguish two cases: the endpoints x1, x2 of these paths
are non-consecutive, in which case the graph contains a sub-divided K2,3 (with x1, x2 the vertices of the small
part, and v plus two vertices of C \ {x1, x2} the larger part); or the endpoints x1, x2 are consecutive. Let P be
the path that goes from x1 to x2 through v inside the inner face. Suppose there is a vertex y in this path such
that there is a path y → C which avoids P . This vertex would have three disjoint paths to C, contradiction.
Therefore, we can draw the component of G − {x1, x2} that contains P on the outside, obtaining a drawing
where strictly more vertices are on the outside face, contradiction.

2 Menger from Kőnig

Show that Kőnig’s theorem implies Menger’s theorem. In particular, show how a polynomial-time algorithm
that decides if a bipartite graph has a matching of size at least k can be used to obtain a polynomial-time
algorithm that decides for two vertices s, t of a graph G whether there exist at least k disjoint paths from s to t.
(Reminder: in class we saw the opposite direction, namely, how Menger’s theorem implies Kőnig’s theorem.)
Solution:

We are given a graph G = (V,E) and vertices s, t ∈ V with st ̸∈ E and are asked whether there are at
least k vertex-disjoint paths from s to t in V . Let n = |V \ {s, t}|. Construct a bipartite graph G′ = (A,B,E′)
as follows:
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1. Place in A n copies of the vertex s, call them s1, . . . , sn and place in B n copies of t, call them t1, . . . , tn.

2. For each v ∈ V \ {s, t}, add a vertex v1 in A and a vertex v2 in B. Add the edge v1v2 ∈ E′.

3. For each uv ∈ E add the edges u1v2 and v1u2 in E′.

4. For each v ∈ N(s) add the edges siv2 for i ∈ {1, . . . , n}

5. For each v ∈ N(t) add the edges v1ti for i ∈ {1, . . . , n}

We now make two claims:

• If G′ has a matching of size n+ k, then G has at least k vertex-disjoint s → t paths.

• If G′ has a vertex cover of size n+ k, then G has an st-separator of size at most k.

Observe that the two claims together imply Menger’s theorem: because G′ is bipartite, its maximum match-
ing size is equal to its minimum vertex cover size. Let k be such that G′ has a matching and a vertex cover of
size n+ k. Then, G has k disjoint s → t paths and an st-separator of size k. Every separator must have size at
least k (because of the k disjoint paths), so this separator is minimum; it is impossible to find k+1 disjoint paths
(because of the separator), so this collection of paths is maximum. Hence, in G we obtain Menger’s theorem.
Of course, since we can decide the maximum matching size in G′ in polynomial time (Hungarian method seen
in class), we therefore also obtain an algorithm for computing the minimum size of an st-separator in G.

For the first claim, suppose we have a matching M of size n + k in G′. If for some u ∈ V exactly one of
u1, u2 is incident on an edge of M , place the edge u1u2 in the matching are remove the edge of M incident on
u1 or u2, maintaining a matching of the same size. We now have the property that in M , for each u ∈ V , either
both u1, u2 are matched or neither is.

Observe that at least k of the vertices si are matched and at least k of the vertices ti are matched, otherwise
M could not have size n+ k. Select in G every edge e = uv such that either u1v2 or v1u2 is in the matching,
as well as the edges incident on s, t which appear in the matching. This gives a graph where s, t have degree at
least k, and all other vertices have degree 0 or 2. We remove from this graph every connected component that
contains neither s nor t, and obtain a subgraph H of G. We claim that H has k disjoint s → t paths.

Consider H − {s, t}. Every component C of this graph is a path with both endpoints adjacent to {s, t},
because all vertices of H except s, t have degree 0 or 2. We claim that it cannot be the case that both endpoints
of C are adjacent to s. Indeed, if there are |C| internal vertices in C, we have |C|+1 edges of M which gave us
the component C (counting the two supposed edges connecting the endpoints to s). However, in G′ this gives
a bipartite graph which has |C| vertices on one side and |C| + 2 vertices on the other (as the two copies of s
are on the same side). Clearly, forming a matching of size |C| + 1 is impossible on this graph. Hence, each
component C of H −{s, t} is in fact a path from s to t. Since s has degree at least k, there exist at least k such
paths.

For the second claim, we assume without loss of generality that n > k (if k ≥ n, then G clearly has an
st-separator of size k). Suppose we have a vertex cover S of G′ of size n + k. We claim that S must contain,
for each v ∈ N(s), the vertex v2. Indeed, if for some v ∈ N(s) we have v2 ̸∈ S, this would force all n copies
of s to be in S. For each u ∈ V we have at least one of u1, u2 in S, so we would have |S| ≥ 2n > n + k
contradiction. Similarly, for all v ∈ N(t) we have v1 ∈ S. As a result, S does not contain any of the copies of
s, t in G′.

We therefore have a vertex cover which for each v ∈ V selects at least one of v1, v2 (to cover the edge
v1v2). Since the size of the cover is n + k, we conclude that there are exactly k vertices v ∈ V such that
v1, v2 ∈ S and for all other vertices S contains exactly one of v1, v2. We claim that these k vertices form an
st-separator S′ in G.

To see that S′ is an st-separator in G, suppose there exists an s → t path that avoids S′. The same path
becomes a path in G′ from a copy of s to a copy of t with an odd length, that is, with an even number of vertices.
Any vertex cover of such a path must either include an endpoint (which is not the case), or both endpoints of
an edge v1v2 (which is also not the case, as we assumed the path avoids such vertices). We therefore reach a
contradiction and conclude that S′ is an st-separator of the desired size.
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3 Rates of growth

Asymptotically, how many graphs on n vertices are there in the following classes? For classes marked with (*),
give an upper bound (because a lower bound is harder to show).

1. All graphs

2. Forests(*)

3. Split graphs

4. Bipartite graphs

5. Chordal graphs

6. Interval graphs(*)

7. Planar graphs(*)

Solution:
All graphs: at most 2(

n
2). Since there are at most n! = nO(n) possible isomorphisms, the correct number is

2Θ(n2).
Forests: at most

( (n2)
n−1

)
, because forest have at most n − 1 edges. The correct asymptotic estimation is

actually 2Θ(n), but this is harder to show.
Split and bipartite graphs: at least 2Θ(n2). Take two sides of size n/2, we have 2n

2/4 possible choices for
the edges.

Chordal graphs: contain split graphs, so the answer is the same if we don’t care about constants in the
exponent.

Interval graphs: nΘ(n). Upper bound: each graph can be described by n intervals with numbers in 1, . . . , 2n.
Lower bound is harder to show.

Planar graphs: nO(n) from upper bound on edges. The correct asymptotic estimation is actually 2Θ(n), but
this is harder to show.

4 Brooks and bipartiteness

Let G be a connected graph with n vertices, m edges, and maximum degree 3 that is not a K4. Show that G
contains a bipartite subgraph with at least m− n

3 edges.
Solution:

By Brooks’ theorem, G can be colored using 3 colors, let V1, V2, V3 be the three classes. We will remove
some of the edges of G so that it becomes bipartite. One of the three classes contains at most n/3 vertices, say
V3. For each v ∈ V3 if v has at least two neighbors in V1 delete its (at most one) edge to V2; otherwise delete
its (at most one) edge to V1. Now, each vertex of V3 either has no neighbors in V1 (so can be placed in V1) or in
V2. We therefore have a bipartite graph and in the process deleted one edge for each vertex of V3, meaning the
graph has at least m− n

3 edges remaining.

5 Cobipartite graphs are perfect

Prove that for all G, if G is bipartite, then G is perfect. Do not use the perfect graph theorem! (otherwise this
is too easy)
Solution:

We want to prove that χ(G) = ω(G) when G is co-bipartite. Note that since co-bipartiteness is preserved
by taking induced subgraphs, we only need to prove this for G itself.

Observe that if χ(G) = k then G has clique-cover number k, that is, there exist k cliques in G whose union
is V , but there do not exist k−1 such cliques. Since G is bipartite, the cliques in question are K1 or K2 and we
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can assume that the number of K2’s is equal to the maximum matching of G. Therefore, χ(G) = n−mm(G),
where mm is the maximum matching size. But, since G is bipartite, χ(G) = n− vc(G) = α(G) = ω(G), as
desired.
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