TD 11: Chordal, Split, and Interval Graphs

1 Interval Trees

A caterpillar is a tree T such that all vertices of degree strictly more than 1 lie on a single path P. Prove that for all graphs G , G is a caterpillar if and only G is a tree and an interval graph. Solution:

If a tree T is a caterpillar \Rightarrow T is an interval graph:

Let $P = x_1, x_2, \ldots, x_p$ be the path that contains all vertices of degree at least 2 in T, that is, all vertices of T outside of P have degree 1. We assign to each x_i an interval of length $\deg(x) + 1$ such that the right endpoint of the interval of x_i is the left endpoint of the interval of x_{i+1} . In particular, x_1 is assigned the interval $[0, \deg(x_1) + 1], x_2$ is assigned $[\deg(x_1) + 1, \deg(x_2) + \deg(x_1) + 2], x_3$ is assigned $[\deg(x_1) + \deg(x_2) +$ $2, \deg(x_1) + \deg(x_2) + \deg(x_3) + 3$ and so on. In other words, the right endpoint of the interval assigned to x_i is $i + \sum_{j=1}^{i} \deg(x_i)$, which is also the left endpoint of the interval of x_{i+1} . Observe that the interval we have constructed so far are a representation of the path P , so what remains is to insert the remaining vertices of T in this representation.

Consider now the neighbors of x_i which lie outside of P. For each such neighbor y we select a distinct integer j lying in the interior of the interval assigned to x_i (i.e. not the endpoints of the interval) and assign to y the interval $[j, j]$. Because we have $\deg(x_i)$ integers to choose from, but x_i has at most $\deg(x_i)$ leaves attached to it, we can assign distinct integers to each leaf neighbor of x_i , ensuring that the intervals indeed represent vertices of degree 1.

If a tree T is an interval graph \Rightarrow T is a caterpiller:

Suppose that T is not a caterpillar. We will then show that the graph contains an asteroidal triple. Let P be the path of the tree that contains as many non-leaf vertices as possible. We may assume that P contains no leaves, as a leaf cannot be an internal vertex of P and if an endpoint of P is a leaf we can shorten P without decreasing the number of non-leaf vertices it contains.

There is a vertex of degree at least 2 not contained in P , call it v. Remove v from T and we obtain a component C_1 that contains all of P and at least one component C_2 which contains no vertex of P. Let x be a leaf of $G[C_2]$.

Take a path P' from v to P and let v' be the first vertex of this path that belongs in P. It must be the case that v' is an internal vertex of P, otherwise $P \cup P'$ would be a path that contains more non-leaf vertices than P. Therefore, P contains at least three vertices. Let y, z be the endpoints of P, which have degree at least 2 in T. Let y' , z' be the neighbors of y, z respectively which do not lie in P. Then x, y', z' is an asteroidal triple. Indeed, removing x and its neighbors does not affect P, so there is still a path from y' to z' ; and removing y' and its neighbors leaves $P - y$ intact, which ensures that $P' \cup P \cup \{v\} \cup C_2$ contains a path from x to z' (similarly for removing z').

2 Interval Graphs and Vertex Orderings

Recall that a graph is chordal if and only if there exists an ordering of the vertices v_1, v_2, \ldots, v_n , such that for each v_i the set of neighbors of v_i with indices $j > i$ (i.e. coming later in the ordering) induces a clique. This is called a Perfect Elimination Ordering.

Show that a graph is an interval graph if and only if there exists an ordering of its vertices v_1, v_2, \ldots, v_n , such that for each $i < j < k$, if $v_i v_k \in E$, then $v_i v_k \in E$. Solution:

An ordering exists \Rightarrow the graph is an interval graph:

We produce from the ordering v_1, \ldots, v_n an interval representation, assigning to each v_k the interval $[f(k), k]$, where $f(k)$ is defined as the minimum $i \in [1, k-1]$ such that $v_i v_k \in E$ and if no such i exists, we set $f(k) = k$. We claim that the resulting interval graph is exactly G.

First, we show that for all $j < k$, if $[f(j), j] \cap [f(k), k] \neq \emptyset$, then $v_jv_k \in E$. Indeed, if the intersection of the two intervals is non-empty, then $j \ge f(k)$, so $v_i v_k \in E$ for some $i \le j$. By the properties of the ordering, $v_i v_k \in E$ implies that $v_j v_k \in E$, as desired.

Second, we show that for all $j < k$, if $[f(j), j] \cap [f(k), k] = \emptyset$, then $v_jv_k \notin E$. Indeed, we have $j < f(k)$, so the minimum i such that $v_i v_k \in E$ is strictly larger than j, hence $v_i v_k \notin E$.

An ordering exists \Leftarrow the graph is an interval graph:

Suppose that $G = (V, E)$ is an interval graph and for each $v \in V$ we have an interval $[s_v, t_v]$ such that $vu \in E$ if and only if $[s_v, t_v] \cap [s_u, t_u] \neq \emptyset$. Order the vertices v_1, \ldots, v_n in non-decreasing order of their right endpoint, that is, so that whenever $i < j$, then $t_{v_i} \leq t_{v_j}$. We claim that this ordering satisfies the desired property. Consider v_i, v_j, v_k , with $i < j < k$ and $v_i v_k \in E$. Therefore, $t_{v_i} \ge s_{v_k}$. However, $t_{v_j} \ge t_{v_i}$ (since $j > i$ and we ordered by right endpoint) and $t_{v_j} \leq t_{v_k}$ (for the same reason), so $t_{v_j} \in [s_{v_k}, t_{v_k}]$, therefore $v_i v_k \in E$ as desired.

3 Maximal Cliques in Chordal Graphs

Show that in a connected chordal graph on n vertices, with $n \geq 2$, there exist at most $n - 1$ distinct maximal cliques. A clique C is maximal if it is impossible to increase it by adding a vertex, i.e. each $v \in V \setminus C$ has a non-neighbor in C.

Show that there exists a non-chordal graph with $2n$ vertices and $2ⁿ$ distinct maximal cliques.

Solution:

For the first part, we do induction on n and observe that the statement is true for $n = 2$. Let $n > 3$ and consider a simplicial vertex v of G . We observe that the maximal cliques of G can be partitioned into two classes: those that contain v; and those that contain a non-neighbor of v and are therefore maximal cliques of $G - v$. By inductive hypothesis, $G - v$ contains at most $n - 2$ maximal cliques. On the other hand, there exists exactly one maximal clique in G that contains v, namely $\{v\} \cup N(v)$, since v is simplicial. Therefore, G has at most $n - 1$ maximal cliques.

For the second part, consider a graph made up of n independent sets of size 2 where we add all possible edges between parts (i.e. nK_2). Any set that contains exactly one vertex from each part is a maximal clique.

4 Split Graphs and Degree Sequences

Let (d_1, d_2, \ldots, d_n) be the degree sequence of a graph G, with $d_i \geq d_{i+1}$ for all i. Prove the following: G is a split graph if and only if $\sum_{i=1}^{k} d_i = k(k-1) + \sum_{i=k+1}^{n} d_i$, where k is the maximum index i such that $d_i \geq i-1$.

Solution:

Suppose that G is a split graph with clique C and independent set I and suppose that $|C| = \omega(G)$, that is, all vertices of I have a non-neighbor in C. We observe that for any vertex $x \in C$ and $y \in I$ we have $deg(x) \geq deg(y)$, therefore in the sorted degree sequence the degrees of vertices of C appear before the degrees of vertices of I. Let $k = |C|$. Then, the k-th vertex in the sequence is a vertex of C of minimum degree. We have $\sum_{i=1}^{k} d_i = 2|E(C)| + |E(C, I)| = k(k-1) + |E(C, I)|$ and $\sum_{i=k+1}^{n} d_i = |E(C, I)|$, so the equality is verified.

Suppose now that the degree sequence satisfies the property, let C be the set of the k highest-degree vertices of the graph and $I = V \setminus C$. We want to show that C is a clique and I an independent set. Indeed, suppose that C is not a clique. Then $\sum_{v \in C} \deg(v) = \sum_{i=1}^k d_i = 2|E(C)| + |E(C, I)| < k(k-1) + \sum_{i=k+1}^n d_i$, where we used the fact that $|E(C, I)| \leq \sum_{v \in I} \deg(v)$ and that $|E(C)| < \frac{k(k-1)}{2}$ $\frac{2^{(2)}-1}{2}$, as C is not a clique. We therefore have a contradiction, since we assumed that $\sum_{i=1}^{k} d_i = k(k-1) + \sum_{i=k+1}^{n} d_i$. Similarly, suppose that I induces

at least one edge. Then $\sum_{v \in I} \deg(v) = \sum_{i=k+1}^{n} d_i = 2|E(I)| + |E(C, I)| > \sum_{i=1}^{k} d_i - k(k-1)$, where we used that $|E(I)| > 0$ and $\sum_{i=1}^{k} d_i = k(k-1) + |E(C, I)|$, which follows because C is a clique. We again have a contradiction, as we had assumed $\sum_{i=k+1}^{n} d_i = \sum_{i=1}^{k} d_i - k(k-1)$.

5 Short cycles in chordal graphs

Show that if G is chordal and an edge $e \in E(G)$ is part of a cycle, then there exists a K_3 in G that contains e. Solution:

Let C be the shortest cycle of G that contains e. If C has length 3, we are done. Otherwise, since G is chordal, C must induce an edge e' , which partitions the cycle C into two paths P_1 , P_2 , such that $P_1 + e'$ and $P_2 + e'$ are both cycles shorter than C. However, the endpoints of e are contained in either P_1 or P_2 , so e is contained in a cycle shorter than C, contradiction.