
2024-2025 Graph Theory

TD 10: Chordal Graphs

1 Clique Cover

A clique cover of a graph G = (V,E) is a partition of V into disjoint sets V1, V2, . . . , Vk such that for all
i ∈ {1, . . . , k}, G[Vi] is a clique. The clique-cover number of G is the minimum number k such that G has a
clique cover with k sets.

1. Observe that the clique-cover number of G is equal to χ(G).

2. Give a polynomial-time algorithm for computing the clique-cover number of a chordal graph.

2 A Tree Communication Problem

Consider the following problem: we are given a tree T = (V,E) and a collection of pairs of vertices (x, y) ∈
V 2. Informally, T represents a communication network and the pair (x, y) encodes the fact that x wants to
communicate with y. Recall that between any two x, y ∈ V (T ) there is a unique path. We want to assign
colors to the pairs so that any two pairs that interfere with each other receive distinct colors, while using as
few colors as possible.

1. Suppose that we say that (x1, y1) and (x2, y2) interfere when the unique path from x1 → y1 and the
unique path x2 → y2 share a vertex. Show that in this case the minimum number of colors can be
computed in polynomial time by constructing a chordal graph with one vertex for each communicating
pair, an edge for each interference, and coloring that graph.

2. Show that if we instead define that two paths interfere when they share an edge (but sharing a vertex does
not count as interference), then the intersection graph we obtain is not chordal.

3 Coloring on Chordal Graphs again

We saw in class a polynomial-time algorithm for computing the chromatic number of a chordal graph. We
consider here an alternative version which does not rely on perfect elimination orderings but rather uses the fact
that minimal separators are cliques.

Consider the following recursive algorithm which takes as input a graph G and an integer k and decides if
χ(G) ≤ k. If G has at most k vertices, the algorithm replies Yes. Otherwise, if G is a clique, the algorithm
replies No. Otherwise, the algorithm finds two vertices x, y which are non-adjacent and computes a minimal
xy-separator S. Let C1, C2, . . . , Ct be the connected components of G − S. We recursively execute the same
algorithm on each G[S ∪ Ci] for i ∈ {1, . . . , t}. If the answer is No for any such sub-instance we reply No,
otherwise we reply Yes.

Prove that the algorithm sketched above is correct and runs in polynomial time.

4 Tree Intersection Models

Recall that in Exercise 2 we defined a class of intersection graphs and proved that they are chordal. In this
exercise we define a richer class of intersection graphs on a tree and prove that this class is actually exactly the
class of all chordal graphs.

Page 1 of 2



2024-2025 Graph Theory

Consider a tree T and let T1, T2, . . . , Tk be a collection of sub-trees, that is, a collection of connected
induced subgraphs of T . We define the intersection graph G of this collection as follows: (i) we have a vertex
in G for each sub-tree Ti (ii) Ti and Tj are adjacent in G if and only if Ti and Tj have a vertex in common.

(Observe that if all the trees in our collection are paths, the intersection graphs we obtain are the same as
those of Exercise 2.)

1. Prove that the intersection graphs that can be formed in this way are chordal.

2. Prove that all chordal graphs can be formed as intersection graphs in this way. (Hint: you will need to
use Exercise 5 of TD2 on this regarding the Helly property of trees.)

Page 2 of 2


