
2024-2025 Graph Theory

TD 10: Chordal Graphs

1 Clique Cover

A clique cover of a graph G = (V,E) is a partition of V into disjoint sets V1, V2, . . . , Vk such that for all
i ∈ {1, . . . , k}, G[Vi] is a clique. The clique-cover number of G is the minimum number k such that G has a
clique cover with k sets.

1. Observe that the clique-cover number of G is equal to χ(G).

2. Give a polynomial-time algorithm for computing the clique-cover number of a chordal graph.

Solution:
The first part is easy to see because a coloring of G is a partition of V into independent sets. These sets are

cliques in G (and vice-versa, cliques in G are independent sets in G).
For the second part, note that we cannot use the previous observation to simply claim that we compute the

chromatic number of G, because G is not necessarily chordal, so it is not clear if COLORING can be solved in
polynomial time in this graph. (We will see later that this argument can be made to work, but we need further
tools.)

We therefore formulate a direct recursive algorithm. For the base case, if G = (V,E) is a clique, we output
a clique cover consisting of a single set (V). Otherwise, let v be a simplicial vertex, which must exist since G is
chordal. We recursively compute a clique cover of G−N [v] and add to this cover the set N [v]. The algorithm
runs in polynomial time, as finding a simplicial vertex can be done in polynomial time and each time we recurse
we have a smaller instance.

Let us argue for correctness. First, the collection of sets we output is indeed a collection of cliques that
covers the whole graph because (i) this is true in the base case (ii) N [v] is a clique, as v is simplicial. Suppose
our algorithm outputs a cover with k sets, but for the sake of contradiction G can be covered with ≤ k− 1 sets.
This clearly cannot happen in the base case, so suppose that it happens for a non-clique G and among all such
counter-examples, pick G with the smallest number of vertices. Suppose that the optimal solution places v in
V1 with V1 ̸= N [v]. Since V1 is a clique, V1 ⊆ N [v], so the (k − 2) sets V2, . . . , Vk−1 of the supposed optimal
solution partition V \V1 ⊇ V \N [v]. However, our algorithm used k− 1 sets for G−N [v] and this is optimal,
as G is a minimum counter-example, contradiction.

2 A Tree Communication Problem

Consider the following problem: we are given a tree T = (V,E) and a collection of pairs of vertices (x, y) ∈
V 2. Informally, T represents a communication network and the pair (x, y) encodes the fact that x wants to
communicate with y. Recall that between any two x, y ∈ V (T) there is a unique path. We want to assign
colors to the pairs so that any two pairs that interfere with each other receive distinct colors, while using as
few colors as possible.

1. Suppose that we say that (x1, y1) and (x2, y2) interfere when the unique path from x1 → y1 and the
unique path x2 → y2 share a vertex. Show that in this case the minimum number of colors can be
computed in polynomial time by constructing a chordal graph with one vertex for each communicating
pair, an edge for each interference, and coloring that graph.

Page 1 of 4

2024-2025 Graph Theory

2. Show that if we instead define that two paths interfere when they share an edge (but sharing a vertex does
not count as interference), then the intersection graph we obtain is not chordal.

Solution:
For the first part, we want to define an intersection graph as hinted and show that it is chordal. To do so, we

will show that the intersection graph must necessarily contain a simplicial vertex. Deleting this vertex (that is,
the corresponding communication pair) and repeating this argument will produce a PEO proving that the graph
is chordal.

Pick an arbitrary vertex r of T and call it the root. For the communication pair (x, y) let Pxy be the unique
path connecting x, y in T and we define the rank of Pxy as the minimum distance of any vertex of Pxy from
r. Consider then a path Pxy of maximum rank. We claim that the vertex representing (x, y) in the intersection
graph is simplicial.

Let z be the vertex of Pxy that is closest to r, so we can think of Pxy as the union of a path x → z with a path
z → y. We claim that for all other pairs (a, b) such that Pab intersects Pxy, it must be the case that z ∈ Pab. If
this is true, then the neighbors of (x, y) in the intersection graph form a clique, so (x, y) is simplicial as desired.
However, the claim that Pab contains z follows from the selection of (x, y): if for the sake of contradiction Pab

contains a vertex of Pxy \ {z} (because the two paths intersect), Pab must also contain a vertex c that is as
close to r as z (because the distance to z is maximal in our selection of x, y), so the unique path from c to the
common vertex of Pab, Pxy must contain z.

For the second part, consider a tree T = K1,4 and call the leaves a, b, c, d. If we have the communication
requests (a, b), (b, c), (c, d), (a, d), the intersection graph formed when we only care about edge-disjointness is
a C4, which is not chordal. We note that because of this example, we can actually see that a polynomial-time
algorithm is not possible for this problem, unless P=NP. Indeed, a tree T = K1,n is sufficient to encode (using
appropriate communication pairs) the edges of an arbitrary graph G, so coloring the corresponding intersection
graph is equivalent to edge-coloring G, which is NP-complete.

3 Coloring on Chordal Graphs again

We saw in class a polynomial-time algorithm for computing the chromatic number of a chordal graph. We
consider here an alternative version which does not rely on perfect elimination orderings but rather uses the fact
that minimal separators are cliques.

Consider the following recursive algorithm which takes as input a graph G and an integer k and decides if
χ(G) ≤ k. If G has at most k vertices, the algorithm replies Yes. Otherwise, if G is a clique, the algorithm
replies No. Otherwise, the algorithm finds two vertices x, y which are non-adjacent and computes a minimal
xy-separator S. Let C1, C2, . . . , Ct be the connected components of G − S. We recursively execute the same
algorithm on each G[S ∪ Ci] for i ∈ {1, . . . , t}. If the answer is No for any such sub-instance we reply No,
otherwise we reply Yes.

Prove that the algorithm sketched above is correct and runs in polynomial time.
Solution:

Let us first argue for correctness. The two base cases are clearly correct: if G has at most k vertices, it can
be colored with at most k colors (assign a distinct color to each vertex); if this is not the case and G is a clique,
then we need |V | > k colors.

For the general case, observe that two non-adjacent x, y always exist, as G is not a clique. Furthermore, if
G is chordal, then any minimal xy-separator S must be a clique. If G[S ∪ Ci] is not k-colorable, for some i,
then G is also not k-colorable, as k-colorability is preserved by taking subgraphs. The interesting part is then
to show that if all G[S∪Ci] are k-colorable, then G is k-colorable. In order to show this, suppose that for some
j ≥ 1 we have a k-coloring of G[S ∪ (C1 ∪ C2 ∪ . . . ∪ Cj)]. (This is true for j = 1, as we have assumed that
a k-coloring of G[S ∪ C1] exists.) We show that from this k-coloring and a k-coloring of G[S ∪ Cj+1] we can
obtain a k-coloring of G[S ∪ (C1 ∪ C2 ∪ . . . ∪ Cj+1)]. Repeating this will produce a coloring of the whole
graph.

The key idea now is to make the coloring of G[S ∪ (C1 ∪C2 ∪ . . . ∪Cj)] and of G[S ∪Cj+1] agree on S.
Without loss of generality, both colorings assign colors 1, 2, . . . , |S| to the vertices of S (because S is a clique),

Page 2 of 4

2024-2025 Graph Theory

so by permuting colors in one coloring we can make sure that the two colorings assign the same color to each
vertex of S. Taking the union of the two colorings is now a coloring of the larger graph, as Cj+1 has not edge
to C1 ∪ . . . ∪ CJ , because Cj+1 is a connected component of G− S.

What remains is to argue that the algorithm runs in polynomial time, which is not obvious. First, let us
point out that if we ignore the recursive calls, the rest of the algorithm runs in polynomial time: checking the
size of G or whether G is a clique is easy; finding two non-adjacent x, y is easy; and a minimal xy-separator
can be constructed by starting with S := V \{x, y} (which is clearly an xy-separator) and arbitrarily removing
redundant vertices from S until S becomes minimal.

Second, the instances on which we recurse are smaller, but this is not obviously sufficient to ensure a
polynomial running time. Indeed, we could have |S| = n − 2 and |C1| = |C2| = 1, in which case from
an instance on n vertices we produce two instances on n − 1 vertices. Naively solving this recurrence gives
T (n) ≤ 2T (n− 1) ⇒ T (n) ≤ 2n.

To work around this difficulty we will use a measure of progress that is slightly more interesting than the
size of the graph. Define the “interesting size” of a graph G, denoted s(G), to be equal to the number of edges
of G, that is the number of non-edges of G. We will prove that the number of recursive calls made by the
algorithm is polynomially bounded by s(G) < n2, and since in each recursive call we make an amount of work
that is polynomial in n, the total running time will be polynomial.

Now consider the general case, where we recurse from G into G[S ∪ Ci], for i ∈ [t], S a minimal clique
separator. We claim s(G[S ∪ Ci]) < s(G) for all i ∈ [t]; and s(G) ≥

∑
i∈[t] s(G[S ∪ Ci]). Before we prove

these inequalities, let us explain why they imply that the number of recursive calls is polynomial. We can
imagine the recursion tree of the execution of the algorithm where all leaves correspond to base case instances.
By bounding the number of leaves we bound the size of the whole tree. We will do a proof by induction on s(G),
so suppose that the statement is true for all graphs of smaller “interesting size” than G. By the first inequality,
all the instances we recurse on have strictly smaller interesting size, so the inductive hypothesis applies. In
particular, suppose that for G[S∪Ci] we produce s(G[S∪Ci])

c base instances, for some constant c ≥ 1. Then,
the total number of base instances for G is at most

∑
i∈[t](s(G[S ∪ Ci]))

c ≤ (
∑

i∈[t] s(G[S ∪ Ci]))
c ≤ s(G)c,

where in the first step we used standard facts about the function xc (namely, xc + yc ≤ (x+ y)c when c ≥ 1);
and in the second step we used the second inequality.

Let us now prove the two inequalities. We have s(G[S ∪ Ci]) < s(G) because each edge that is missing
is G[S ∪ Ci] is also missing in G and furthermore there exists a missing edge from Ci to Cj for j ̸= i in G
(because S is a separator).

For the second inequality, it is key to observe that the sum
∑

i∈[t] s(G[S ∪ Ci]) counts every non-edge at
most once, because the only pairs of vertices which appear in two distinct graphs in the sum are pairs where
both vertices are in S, and S is a clique. Therefore, since every non-edge is counted once and every non-edge
of one of these graphs is also a non-edge of G we get the inequality.

4 Tree Intersection Models

Recall that in Exercise 2 we defined a class of intersection graphs and proved that they are chordal. In this
exercise we define a richer class of intersection graphs on a tree and prove that this class is actually exactly the
class of all chordal graphs.

Consider a tree T and let T1, T2, . . . , Tk be a collection of sub-trees, that is, a collection of connected
induced subgraphs of T . We define the intersection graph G of this collection as follows: (i) we have a vertex
in G for each sub-tree Ti (ii) Ti and Tj are adjacent in G if and only if Ti and Tj have a vertex in common.

(Observe that if all the trees in our collection are paths, the intersection graphs we obtain are the same as
those of Exercise 2.)

1. Prove that the intersection graphs that can be formed in this way are chordal.

2. Prove that all chordal graphs can be formed as intersection graphs in this way. (Hint: you will need to
use Exercise 5 of TD2 on this regarding the Helly property of trees.)

Page 3 of 4

2024-2025 Graph Theory

Solution:
For the first question, the proof is essentially identical to that of Exercise 2. In particular, we select a root

r of T , and for each Ti find the vertex that is closest to the root, call this the sub-root of Ti. Select a Ti whose
sub-root ri is as far from r as possible. We claim that ri must be contained in all Tj that intersect Ti and the
argument is the same as in Exercise 2.

For the second question, we recall that if we have a collection T1, . . . , Tk of sub-trees of a tree T such that
any two Ti, Tj share a common vertex, there actually exists a vertex that is common to all k sub-trees. We use
this fact to build a tree model of an arbitrary chordal graph G by induction. If G has at most 2 vertices, this
is easy. Suppose then that G contains a simplicial vertex v and we can form by induction a tree intersection
model of G − v. Let N(v) = {v1, . . . , vk} and T1, . . . , Tk be the sub-trees representing the vertices of N(v)
in this model. Because N(v) is a clique, any pair Ti, Tj has a non-empty intersection. Therefore, by the Helly
property, there exists a node x of the tree such that x ∈ Ti for all i ∈ [k]. We add to the tree a new leaf x′

connected to x and represent v by the sub-tree {x, x′}.

Page 4 of 4

