Graph Theory: Lecture 9 Cographs and Friends

Michael Lampis

December 5, 2024

Michael Lampis

Graph Theory: Lecture 9

December 5, 2024

→ 3 → 3

1/17

Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

- A graph is a forest if and only if it has no C_k (induced) subgraph.
- A graph is bipartite if and only if it has no C_{2k+1} (induced) subgraph.
- A graph is planar if and only if it has not $K_{3,3}$, K_5 topological minor.
- A graph is chordal if it contains no induced C_k subgraph, for $k \ge 4$.
- A graph is split if it contains no induced $2K_2$, C_4 , or C_5 .
- A graph is interval if it is chordal and contains no Asteroidal Triple

Image: A matrix and a matrix

Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

- A graph is a forest if and only if it has no C_k (induced) subgraph.
- A graph is bipartite if and only if it has no C_{2k+1} (induced) subgraph.
- A graph is planar if and only if it has not $K_{3,3}$, K_5 topological minor.
- A graph is chordal if it contains no induced C_k subgraph, for $k \ge 4$.
- A graph is split if it contains no induced $2K_2$, C_4 , or C_5 .

• A graph is interval if it is chordal and contains no Asteroidal Triple We examined what happens if we forbid long or odd induced cycles. What if we forbid paths?

3

Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G' of G, either G' or $\overline{G'}$ is disconnected.

э

Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G' of G, either G' or $\overline{G'}$ is disconnected.

Recall: for all G', at least one of G', $\overline{G'}$ is connected, so G is a cograph if **exactly** one of the two is connected for each induced subgraph.

Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G' of G, either G' or $\overline{G'}$ is disconnected.

Examples:

- C_4 is a cograph
- C_k , $k \ge 5$ is not a cograph
- P_k , $k \ge 4$ is not a cograph

Cographs – Characterization

Theorem

The following are equivalent:

- G is a cograph
- **②** G can be constructed from K₁s using **Join** and **Union** operations
- G can be constructed from K₁s using Union and Complement operations
- G contains no induced P₄

Cographs – Characterization

Theorem

The following are equivalent:

- G is a cograph
- **a** G can be constructed from K₁s using **Join** and **Union** operations
- G can be constructed from K₁s using Union and Complement operations
- G contains no induced P₄

Note: Implies that cograph recognition is in NP \cap coNP and in fact in P. (why?)

Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

- Each leaf is a vertex of G.
- Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the two operations Join and Union.

Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

- Each leaf is a vertex of G.
- Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the two operations Join and Union.

Examples: Join (Union (a,b)) (Union (a,b)) $\rightarrow C_4$

Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

- Each leaf is a vertex of G.
- Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the two operations Join and Union.

Examples:

Lemma

G is a cograph if and only if G has a cotree.

N/1	ich	201	1 2 22	DIC
1 1 1		aei	Laill	015

3

イロト イヨト イヨト --

Lemma

G is a cograph if and only if G has a cotree.

Proof.

Proof by induction:

- G is cograph \Rightarrow G has a cotree
 - G is cograph ⇒ G is disconnected or G is disconnected into components C₁,..., C_k.
 - By inductive hypothesis, we have a cotree for each C_i
 - If G disconnected, take Union of cotrees; if not, take Join of cotrees.
- G is cograph $\leftarrow G$ has a cotree
 - If root of tree is 0, G is disconnected into components C_1, \ldots, C_k .
 - Any induced subgraph contained in a C_i is good by IH.
 - Any subgraph with vertices from two components is disconnected.
 - Proof is symmetric if root is 1.

Lemma

G is a cograph if and only if G has no induced P_4 .

Proof.

NIC	hael	l am	nic
1VIIC	naci	Lann	

3

7/17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Lemma

G is a cograph if and only if G has no induced P_4 .

Proof.

G is cograph \Rightarrow no induced *P*₄: Easy: $P_4 = \overline{P_4}$, so if *G* contains *P*₄, *G* contains an induced subgraph that proves that it is not a cograph.

Lemma

G is a cograph if and only if G has no induced P_4 .

Proof.

G is cograph \Leftarrow no induced P_4 :

Proof by induction on the size of G

- Let $x \in V(G)$ and consider G x, apply IH, G x is cograph.
- Suppose wlog that G x is disconnected into C₁, C₂,..., C_k (otherwise take its complement)
- If x is universal:
 - All subgraphs that contain x have disconnected complements.
 - All other subgraphs are OK by IH.

イロト イポト イヨト イヨト

Lemma

G is a cograph if and only if G has no induced P_4 .

Proof.

G is cograph \leftarrow no induced P_4 :

Proof by induction on the size of G

- Then, x is not universal.
- If x has no neighbor in a component C_i :
 - Let $a \in V(C_i)$
 - Subgraphs without $x \Rightarrow \text{Good}!$ (IH)
 - Subgraphs without $a \Rightarrow \text{Good}!$ (IH)
 - Subgraphs with a and $x \Rightarrow$ disconnected, Good!

Lemma

G is a cograph if and only if G has no induced P_4 .

Proof.

G is cograph \Leftarrow no induced P_4 : Proof by induction on the size of G

• Then, x is not universal and x has a neighbor is each component.

• Let
$$ax
ot\in E$$
, $bx \in E$, $a, b \in C_1$

- Let $cx \in E$, $c \in C_2$
- Then, $a \rightarrow b, x, c$ induces a P_k , $k \ge 4$, contradiction!

Theorem

The following are polynomial-time solvable:

- Deciding if G is a cograph.
- Computing the max independent set of a cograph.
- Computing the max clique of a cograph.
- Computing the chromatic number of a cograph.

< □ > < 凸

Theorem

The following are polynomial-time solvable:

- Deciding if G is a cograph.
- Computing the max independent set of a cograph.
- Computing the max clique of a cograph.
- Computing the chromatic number of a cograph.

Proof.

Construct a cotree recursively

Theorem

The following are polynomial-time solvable:

- Deciding if G is a cograph.
- Computing the max independent set of a cograph.
- Computing the max clique of a cograph.
- Computing the chromatic number of a cograph.

Proof.

- If $G = G_1 \cup G_2$, return $\alpha(G_1) + \alpha(G_2)$.
- If $G = G_1 \times G_2$, return max{ $\alpha(G_1), \alpha(G_2)$ }.

Theorem

The following are polynomial-time solvable:

- Deciding if G is a cograph.
- Computing the max independent set of a cograph.
- Computing the max clique of a cograph.
- Computing the chromatic number of a cograph.

Proof.

Run previous algorithm on complement of G.

< □ > < 凸

Theorem

The following are polynomial-time solvable:

- Deciding if G is a cograph.
- Computing the max independent set of a cograph.
- Computing the max clique of a cograph.
- Computing the chromatic number of a cograph.

Proof.

- If $G = G_1 \cup G_2$, return max{ $\chi(G_1), \chi(G_2)$ }.
- If $G = G_1 \times G_2$, return $\chi(G_1) + \chi(G_2)$.

8/17

< ロ > < 同 > < 回 > < 回 > < 回 > <

More graph classes!

N A	(ch)		0.000.0	210
1.01		чен п	a u u	215

・ロト ・四ト ・ヨト ・ヨト

Where we are

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G' we have $\chi(G') = \omega(G')$.

3

11 / 17

イロト 不得 トイヨト イヨト

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G' we have $\chi(G') = \omega(G')$.

- Defined by Berge in the 1960's
- Closure under complement open for 10 years (Lovasz 1970's)
- Forbidden subgraph characterization open for 40 years (Chudnovsky et al. 2006)
- Generalize many poly-time solvable cases of independent set, clique, coloring.

イロト イヨト イヨト ・

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G' we have $\chi(G') = \omega(G')$.

Theorem (Weak Perfect Graph Theorem)

G is perfect if and only if \overline{G} is perfect.

Theorem (Strong Perfect Graph Theorem)

G is perfect if and only if *G* has no C_{2k+1} or \overline{C}_{2k+1} induced subgraph, for $k \ge 2$ (no odd holes or anti-holes).

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

NALC	b b b		00.00	
IVIIC.	пае	Ld		15

• • • • • • • • • •

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

Proof.

Straight from definition: G' non-empty induced subgraph of $G \Rightarrow G'$ bipartite $\Rightarrow \omega(G') = 2$ and $\chi(G') = 2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

Proof.

Straight from definition: G' non-empty induced subgraph of $G \Rightarrow G'$ bipartite $\Rightarrow \omega(G') = 2$ and $\chi(G') = 2$.

Proof.

(Using Strong PG theorem) G bipartite, so G has no odd holes. $\overline{C}_5 = C_5$ is also not in G. \overline{C}_{2k+1} , for $2k+1 \ge 7$ contains a K_3 , so also not in G.

12/17

イロト イヨト イヨト ・

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.

NALC	b b b		2010
IVIIC.	пае	Lau	IDIS

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.

Proof.

(Using Strong PG theorem)

- G is cograph \Rightarrow all induced subgraphs G' which are connected have \overline{G}' disconnected.
- If G had a G' = C_{2k+1} (or G' = C
 _{2k+1}), for k ≥ 2 as an induced subgraph, then G', G' are both connected, contradiction.

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.

Proof.

Direct application of definition and induction:

- If G is disconnected, ω(G) is max over all components, χ(G) is max over all components, by IH in each component C, ω(C) = χ(C).
- If G is connected, ω(G) is sum over all components, χ(G) is sum over all components, by IH in each component C, ω(C) = χ(C).

イロト イヨト イヨト ・

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.

NALC	b b b		2010
IVIIC.	пае	Lau	IDIS

э

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.

Proof.

Direct application of definition and induction:

- Let x be a simplicial vertex. Two cases:
 - $\omega(G) = \omega(G x) + 1$. By IH $\omega(G x) = \chi(G x) \ge \chi(G) 1$ so $\omega(G) \ge \chi(G) \Rightarrow \omega(G) = \chi(G)$.
 - ω(G) = ω(G x) = χ(G x). In this case, χ(G x) ≥ deg(x) + 1, because ω(G) ≥ deg(x) + 1. So, after coloring G x there is always an available color for x.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.

Proof.

Using Strong PG theorem

- *G* is chordal \Rightarrow no odd holes or \overline{C}_5
- If G has a \overline{C}_{2k+1} for $2k+1 \ge 7$ as induced subgraph, call its vertices $x_1, x_2, \ldots, x_{2k+1}$.
- Observe that x_1, x_3, x_{2k+1}, x_4 induces a C_4 contradiction.

An Application

11/11/2	haa		2010
IVIIC.	пае	Lai	HUIS

3

15 / 17

<ロト < 四ト < 三ト < 三ト

Line Graphs of Bipartite Graphs are Perfect

Theorem

If G is bipartite, then L(G) is perfect.

NALC	b b b		2010
IVIIC.	пае	Lau	IDIS

э

イロト イポト イヨト イヨト

Line Graphs of Bipartite Graphs are Perfect

Theorem

If G is bipartite, then L(G) is perfect.

Proof.

Using Strong PG theorem

- G is bipartite, contains no odd holes, so L(G) contains no odd holes.
- If L(G) has a C
 {2k+1} for 2k + 1 ≥ 7 as induced subgraph, call its vertices x₁, x₂,..., x{2k+1}.
- Consider x_1, x_3, x_4, x_5, x_6 , each corresponding to an edge $a_i b_i$ of G
 - x_1 is adjacent to all others, say $a_3 = a_1$ so $b_1 \neq b_3$
 - Because x_3, x_4 non-adjacent, $a_4 \neq a_1$, $b_4 = b_1$
 - Because x_4, x_5 non-adjacent, $b_5 \neq b_4$, $a_5 = a_1 = a_3$
 - Because x_5, x_6 non-adjacent, $a_6 \neq a_1$, $b_6 = b_4 = b_1$
 - But x_3, x_6 adjacent, while $b_3 \neq b_6$ and $a_3 \neq a_6!!$

An application

Theorem (Again?)

If G is bipartite, then its maximum matching equals its minimum vertex cover.

Proof.

- L(G) is perfect $\Rightarrow \overline{L(G)}$ is perfect
- $\alpha(L(G)) = \overline{\chi}(L(G))$
 - α(L(G)) is just max matching of G
 - $\overline{\chi}(L(G))$ is minimum clique cover
 - Cliques of L(G) are vertices of G
 - $\Rightarrow \overline{\chi}(L(G))$ is minimum vertex cover of G

< ロ > < 同 > < 回 > < 回 > < 回 > <