Graph Theory: Lecture 8 Split and Interval Graphs

Michael Lampis

November 15, 2024

Michael Lampis

Graph Theory: Lecture 8

November 15, 2024

∃ ⇒

э

Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

- A graph is a forest if and only if it has no C_k (induced) subgraph.
- A graph is bipartite if and only if it has no C_{2k+1} (induced) subgraph.
- A graph is planar if and only if it has not $K_{3,3}$, K_5 topological minor.

Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

- A graph is a forest if and only if it has no C_k (induced) subgraph.
- A graph is bipartite if and only if it has no C_{2k+1} (induced) subgraph.
- A graph is planar if and only if it has not $K_{3,3}$, K_5 topological minor.
- Previous lecture: a graph is chordal if it contains no induced C_k subgraph, for k ≥ 4.

We show that chordality is useful. But where is it coming from?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Michael Lampis

3

イロト イヨト イヨト イヨト

Definition

A graph G = (V, E) is **split** if V can be partitioned into a clique C and an independent set I.

э

イロト 不得 トイヨト イヨト

Definition

A graph G = (V, E) is **split** if V can be partitioned into a clique C and an independent set *I*.

3

Definition

A graph G = (V, E) is **split** if V can be partitioned into a clique C and an independent set *I*.

3

Definition

A graph G = (V, E) is **split** if V can be partitioned into a clique C and an independent set I.

Relation between split and ...:

- Forest?
- Bipartite?
- Planar?
- Chordal?

э

イロト 不得 ト イヨト イヨト

Basic Facts

Lemma

G is split if and only if \overline{G} is split.

Lemma

If G is split, then G is chordal.

Lemma

If G is split, then we have one of the three following conditions:

|C| = ω(G) and |I| = α(G), and the partition into C, I is unique.
 |C| = ω(G) - 1 and |I| = α(G)
 |C| = ω(G) and |I| = α(G) - 1

3

5/24

イロト イヨト イヨト ・

Closure under complement

Lemma

G is split if and only if \overline{G} is split.

Proof.

If G = (V, E) and $V = C \cup I$, where C is a clique and I an independent set, then in \overline{G} , C is an independent set and I is a clique, so \overline{G} is split.

Closure under complement

Lemma

G is split if and only if \overline{G} is split.

Proof.

If G = (V, E) and $V = C \cup I$, where C is a clique and I an independent set, then in \overline{G} , C is an independent set and I is a clique, so \overline{G} is split.

Split graphs are the bizarro cousins of bipartite graphs...

Lemma

If G is split, then we have one of the three following conditions:

• $|C| = \omega(G)$ and $|I| = \alpha(G)$, and the partition into C, I is unique.

2
$$|C| = \omega(G) - 1$$
 and $|I| = \alpha(G)$

•
$$|C| = \omega(G)$$
 and $|I| = \alpha(G) - 1$

Lemma

If G is split, then we have one of the three following conditions:

1 $|C| = \omega(G)$ and $|I| = \alpha(G)$, and the partition into C, I is unique.

$$|\mathcal{C}| = \omega(\mathcal{G}) - 1$$
 and $|\mathcal{I}| = \alpha(\mathcal{G})$

•
$$|C| = \omega(G)$$
 and $|I| = \alpha(G) - 1$

How can the partition into C, I not be unique? (Compare with bipartite graphs)

イロト イヨト イヨト ・

Lemma

If G is split, then we have one of the three following conditions:

() $|C| = \omega(G)$ and $|I| = \alpha(G)$, and the partition into C, I is unique.

2
$$|C| = \omega(G) - 1$$
 and $|I| = \alpha(G)$

$$|C| = \omega(G)$$
 and $|I| = \alpha(G) - 1$

Proof.

We have:

• $|C| \leq \omega(G)$ and $|I| \leq \alpha(G)$

•
$$|C| + |I| = n$$

•
$$\omega(G) + \alpha(G) \le n + 1$$
 (why?)

• \Rightarrow $n \le \alpha(G) + \omega(G) \le n + 1$

Lemma

If G is split, then we have one of the three following conditions:

1
$$|C| = \omega(G)$$
 and $|I| = \alpha(G)$, and the partition into C, I is unique.

2
$$|\mathcal{C}| = \omega(\mathcal{G}) - 1$$
 and $|\mathcal{I}| = \alpha(\mathcal{G})$

3
$$|C| = \omega(G)$$
 and $|I| = \alpha(G) - 1$

Proof.

• If
$$|C| \le \omega(G) - 2 ...$$

• Or $|I| \le \alpha(G) - 2 ...$
• Or $(|C| \le \omega(G) - 1 \text{ and } |I| \le \alpha(G) - 1) ...$
• $\Rightarrow n = |C| + |I| \le \alpha(G) + \omega(G) - 2 \le n - 1 \text{ contradiction!}$

- ∢ ⊒ →

э

Lemma

If G is split, then we have one of the three following conditions:

• $|C| = \omega(G)$ and $|I| = \alpha(G)$, and the partition into C, I is unique.

2
$$|C| = \omega(G) - 1$$
 and $|I| = \alpha(G)$

3
$$|\mathcal{C}| = \omega(\mathcal{G})$$
 and $|\mathcal{I}| = lpha(\mathcal{G}) - 1$

Proof.

If $|C| = \omega(G)$ and $|I| = \alpha(G)$, then the partition is unique

- Suppose (C', I') is alternative partition
 - We must have |C'| = |C| and |I'| = |I|
- C' contains one vertex of I, so $C' = C \setminus \{x\} \cup \{y\}$, with $x \in C, y \in I$.
- If xy ∈ E, C ∪ {y} is larger clique (!), otherwise I ∪ {x} is larger independent set, contradiction!

Split Graphs are Chordal

Lemma

If G is split, then G is chordal.

NALC	b b b		2010
IVIIC.	пае	Lau	IDIS

Split Graphs are Chordal

Lemma

If G is split, then G is chordal.

Proof.

We can form a PEO by starting with the vertices of I and continuing with the vertices of C.

Image: Image:

э

Split Graphs are Chordal

Lemma

If G is split, then G is chordal.

Proof.

We can form a PEO by starting with the vertices of I and continuing with the vertices of C.

Proof.

If G is split, then G contains no induced C_k , with $k \ge 4$ (why?).

8/24

Split Graphs Characterization

Theorem

For all G, the following are equivalent:

- G is split
- **2** G is chordal and \overline{G} is chordal
- § G has none of the following as induced subgraphs: $C_4, C_5, 2K_2$.

Image: Image:

Split Graphs Characterization

Theorem

For all G, the following are equivalent:

G is split

2 G is chordal and \overline{G} is chordal

§ G has none of the following as induced subgraphs: $C_4, C_5, 2K_2$.

Proof.

- $\textcircled{1} \Rightarrow 2$
 - G is split $\Rightarrow \overline{G}$ is split, \Rightarrow both are chordal.

$$2 \Rightarrow 3$$

- G chordal \Rightarrow no C_4, C_5
- \overline{G} chordal $\Rightarrow G$ has no $2K_2$ (otherwise \overline{G} has $\overline{2K_2} = C_4$ induced subgraph)

Something easier

Lemma

If G has none of $2K_2, C_4, C_5$ as induced subgraphs, then G and \overline{G} are chordal.

3

Something easier

Lemma

If G has none of $2K_2$, C_4 , C_5 as induced subgraphs, then G and \overline{G} are chordal.

Proof.

- No $2K_2 \Rightarrow$ no C_6, C_7, \ldots as induced subgraphs, so G is chordal
- \overline{G} contains no $\overline{2K_2}, \overline{C_4}, \overline{C_5} = C_4, 2K_2, C_5$, so \overline{G} is chordal.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Something easier

Lemma

If G has none of $2K_2$, C_4 , C_5 as induced subgraphs, then G and \overline{G} are chordal.

Proof.

- No $2K_2 \Rightarrow$ no C_6, C_7, \ldots as induced subgraphs, so G is chordal
- \overline{G} contains no $\overline{2K_2}, \overline{C_4}, \overline{C_5} = C_4, 2K_2, C_5$, so \overline{G} is chordal.

Still missing: $(2,3) \Rightarrow (1)$

3

Forbidden subgraphs to split partition

Lemma

If G has none of $2K_2$, C_4 , C_5 as induced subgraphs, then G is split.

イロト 不得 トイヨト イヨト

Forbidden subgraphs to split partition

Lemma

If G has none of $2K_2$, C_4 , C_5 as induced subgraphs, then G is split.

Proof.

High-level idea:

- Start with "best possible" partition into C, I
 - Assume $|C| = \omega(G)$ and G[I] has minimum number of edges.
- Assume that I is not an independent set
- Argue locally to find a forbidden induced subgraph \Rightarrow contradiction.

11/24

Suppose that C is a maximum clique and $I = V \setminus C$ induces minimum number of edges but contains an edge $i_1i_2 \in E$.

- Each of i_1, i_2 has a non-neighbor in C
- In fact, they have distinct non-neighbors c_1, c_2
- We know that: $i_1i_2 \in E, c_1c_2 \in E, i_1c_1 \notin E, i_2c_2 \notin E$
- Exactly one of i_1c_2, i_2c_1 is an edge
- Without loss of generality $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 .
- Plan: show that there is some way to obtain from this a C_4 or C_5 .

Suppose that C is a maximum clique and $I = V \setminus C$ induces minimum number of edges but contains an edge $i_1 i_2 \in E$.

- Each of i_1, i_2 has a non-neighbor in C
 - Otherwise $C + i_1$ or $C + i_2$ is a larger clique.
- In fact, they have distinct non-neighbors c1, c2
- We know that: $i_1i_2 \in E, c_1c_2 \in E, i_1c_1 \notin E, i_2c_2 \notin E$
- Exactly one of i_1c_2, i_2c_1 is an edge
- Without loss of generality $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 .
- Plan: show that there is some way to obtain from this a C_4 or C_5 .

Suppose that C is a maximum clique and $I = V \setminus C$ induces minimum number of edges but contains an edge $i_1i_2 \in E$.

- Each of i_1, i_2 has a non-neighbor in C
- In fact, they have distinct non-neighbors c_1, c_2
 - Otherwise, there exists unique $c \in C$ that is non-neighbor of i_1, i_2 , so $C c + \{i_1, i_2\}$ is a larger clique.
- We know that: $i_1i_2 \in E, c_1c_2 \in E, i_1c_1 \notin E, i_2c_2 \notin E$
- Exactly one of i_1c_2, i_2c_1 is an edge
- Without loss of generality $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 .
- Plan: show that there is some way to obtain from this a C_4 or C_5 .

Suppose that C is a maximum clique and $I = V \setminus C$ induces minimum number of edges but contains an edge $i_1i_2 \in E$.

- Each of i_1, i_2 has a non-neighbor in C
- In fact, they have distinct non-neighbors c_1, c_2
- We know that: $i_1i_2 \in E, c_1c_2 \in E, i_1c_1 \notin E, i_2c_2 \notin E$
- Exactly one of i_1c_2, i_2c_1 is an edge
 - None are edges $\Rightarrow 2K_2$
 - Both are edges $\Rightarrow C_4$
- Without loss of generality $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 .
- Plan: show that there is some way to obtain from this a C_4 or C_5 .

Part 2: another independent vertex

So far:

- C is maximum clique, $I = V \setminus C$ induces minimum number of edges
- $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 , with $i_1, i_2 \in I$ and $c_1, c_2 \in C$

We observe:

- $\{i_1, i_2\}$ dominates $C \setminus \{c_1, c_2\}$
- In fact, i_1 dominates $C \setminus \{c_1, c_2\}$
- Therefore, $C' = C c_1 + i_1$ is also a maximum clique, so $I' = V \setminus C'$ must induce at least as many edges as I
- Therefore, there exists i_3 with $i_1i_3 \notin E$ and $i_3c_1 \in E$.

Part 2: another independent vertex

So far:

• C is maximum clique, $I = V \setminus C$ induces minimum number of edges

• $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 , with $i_1, i_2 \in I$ and $c_1, c_2 \in C$

We observe:

- $\{i_1, i_2\}$ dominates $C \setminus \{c_1, c_2\}$
 - If c_3 non-adjacent to i_1, i_2 , then c_3c_1, i_1i_2 is a $2K_2$.
- In fact, i_1 dominates $C \setminus \{c_1, c_2\}$
- Therefore, $C' = C c_1 + i_1$ is also a maximum clique, so $I' = V \setminus C'$ must induce at least as many edges as I
- Therefore, there exists i_3 with $i_1i_3 \notin E$ and $i_3c_1 \in E$.

Part 2: another independent vertex

So far:

• C is maximum clique, $I = V \setminus C$ induces minimum number of edges

• $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 , with $i_1, i_2 \in I$ and $c_1, c_2 \in C$

We observe:

- $\{i_1, i_2\}$ dominates $C \setminus \{c_1, c_2\}$
- In fact, i_1 dominates $C \setminus \{c_1, c_2\}$
 - If c_3 adjacent to i_2 only, then $c_3i_2i_1c_2c_3$ is an induced C_4 .
- Therefore, $C' = C c_1 + i_1$ is also a maximum clique, so $I' = V \setminus C'$ must induce at least as many edges as I
- Therefore, there exists i_3 with $i_1i_3 \notin E$ and $i_3c_1 \in E$.

Part 3: using the new vertex

So far:

- C is maximum clique, $I = V \setminus C$ induces minimum number of edges
- $i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1$ is an induced P_4 , with $i_1, i_2 \in I$ and $c_1, c_2 \in C$
- $i_3 \in I$ with $i_3c_1 \in E$ and $i_1i_3 \notin E$

To wrap this up:

- If $i_3i_2 \notin E$, we have a $2K_2$ (i_3c_1, i_1i_2)
- So, $i_3i_2 \in E$ and $i_3 \rightarrow i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow c_1 \rightarrow i_3$ is a C_5
- If the C₅ is induced, done!
- If it has a chord:
 - It cannot be i_1i_3 , nor i_1c_1 , so it is not incident on i_1
 - It cannot be i_2c_2 , nor i_2c_1 , so it is not incident on i_2
 - Therefore, it must be i_3c_2 , but then $i_3 \rightarrow i_2 \rightarrow i_1 \rightarrow c_2 \rightarrow i_3$ is an induced C_4 , done!

- N /l + -	chao		2010
	спае	Lai	HUIS

3

<ロト <問ト < 目と < 目と

Definition

A graph G is an **interval graph** if it can be represented as the intersection graph of a set of intervals of the real line.

Definition

A graph G is an **interval graph** if it can be represented as the intersection graph of a set of intervals of the real line.

Definition

G = (V, E) is interval if we can associate with each vertex v an interval $[s_v, t_v]$ such that $xy \in E$ if and only if $[s_x, t_x] \cap [s_y, t_y] \neq \emptyset$.

Definition

A graph G is an **interval graph** if it can be represented as the intersection graph of a set of intervals of the real line.

Definition

G = (V, E) is interval if we can associate with each vertex v an interval $[s_v, t_v]$ such that $xy \in E$ if and only if $[s_x, t_x] \cap [s_y, t_y] \neq \emptyset$.

- Intersection graph: more general notion where *E* represents which pairs have non-empty intersection from a ground set.
- Interval graphs arise naturally in scheduling applications.

16/24

Interval Graphs – Example

イロト イボト イヨト イヨト

Interval Graphs are Chordal

Theorem

If G is an interval graph, then G is chordal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Interval Graphs are Chordal

Theorem

If G is an interval graph, then G is chordal.

Proof.

We produce a PEO:

- Let $x \in V(G)$ such that $[s_x, t_x]$ has minimum **right endpoint** t_x .
- Claim: x is simplicial.
- Remove x from G, repeat.

< □ > < 凸

Interval Graphs are Chordal

Theorem

If G is an interval graph, then G is chordal.

Proof.

We produce a PEO:

- Let $x \in V(G)$ such that $[s_x, t_x]$ has minimum **right endpoint** t_x .
- Claim: x is simplicial.
- Remove x from G, repeat.

Illuminating exercise: can also prove this by showing that C_k , for $k \ge 4$ is not an interval graph.

18 / 24

イロト イヨト イヨト ・

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

< □ > < □ > < □ > < □ >

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Clearly: x, y, z must be an independent set

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Example:

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Example:

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Example:

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Example:

< □ > < 凸

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Example:

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Theorem

If G is interval, then G has no asteroidal triple.

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Theorem

If G is interval, then G has no asteroidal triple.

Proof.

- x, y, z are disjoint intervals.
- Wlog $t_x < s_y < t_y < s_z$.
- Then, N[y] separates x from z!

э

イロト イヨト イヨト イヨト

Definition

In a graph G = (V, E), three vertices x, y, z form an **asteroidal triple** if any two of them are connected by a path that avoids the neighborhood of the third.

Theorem

If G is interval, then G has no asteroidal triple.

Theorem

G is an interval graph if and only if G is chordal and AT-free.

19/24

Relationships between classes

Subclasses of chordal graphs:

- Split
- Interval
- Trees

イロト 不得 トイヨト イヨト

3

20 / 24

Relationships between classes

Subclasses of chordal graphs:

- Split
- Interval
- Trees

Classes are incomparable:

- \exists split graph which is not interval, nor tree
- \exists interval graph which is not split, nor tree
- \exists tree which is not split, nor interval

< □ > < 凸

Relationships between classes

Subclasses of chordal graphs:

- Split
- Interval
- Trees

Classes are incomparable:

- \exists split graph which is not interval, nor tree
- \exists interval graph which is not split, nor tree
- \exists tree which is not split, nor interval

All three recognizable in polynomial time.

Algorithmic Example

Michael Lampis

Graph Theory: Lecture 8

November 15, 2024

イロト イヨト イヨト イヨト

21/24

Dominating Set

Definition

A **Dominating Set** of a graph G = (V, E) is a set $S \subseteq V$ such that all $v \in V \setminus S$ have a neighbor in S.

Definition

Algorithmic problem: decide if a given graph has a dominating set of size at most k.

Note: this problem is NP-complete in general.

Dominating Set – Interval Graphs

Greedy algorithm:

- Initially $S := \emptyset$
- Order intervals by their right endpoint
- As long as there exists a non-dominated interval, pick non-dominated x with minimum t_x
 - Select y such that y dominates x and t_y is maximum
 - Set $S := S \cup \{y\}$

Dominating Set – Interval Graphs

Greedy algorithm:

• Initially
$$S := \emptyset$$

- Order intervals by their right endpoint
- As long as there exists a non-dominated interval, pick non-dominated x with minimum t_x
 - Select y such that y dominates x and t_y is maximum
 - Set $S := S \cup \{y\}$

Correctness:

- Clearly polynomial-time
- Optimality:
 - Consider an optimal solution, sorted by the right endpoint, and let $[s_k, t_k]$ be the first interval we select that is not in this optimal solution.
 - We selected $[s_k, t_k]$ to dominate x, while the optimal solution used $[s_{k'}, t_{k'}]$, with $t_{k'} \leq t_k$.
 - Replace [s_{k'}, t_{k'}] with [s_k, t_k] in the optimal, we still have a valid solution of the same size.

23 / 24

Dominating Set – Split Graphs

Theorem

Dominating Set is NP-complete on split graphs.

NALC	hae		nnic
TALL	лас	Lai	כוטוו

3

イロト 不得 トイヨト イヨト

Dominating Set – Split Graphs

Theorem

Dominating Set is NP-complete on split graphs.

Proof.

We show that we can transform **any** graph G into a split graph G' such that G' has a dominating set of size k if and only if G does.

- G' has two copies of V(G), V_1, V_2
- V_1 is a clique, V_2 is an independent set
- $u \in V_1$ is adjacent to $v \in V_2$ iff $uv \in E(G)$ or u = v.

Dominating Set – Split Graphs

Theorem

Dominating Set is NP-complete on split graphs.

Proof.

We show that we can transform **any** graph G into a split graph G' such that G' has a dominating set of size k if and only if G does.

- G' has two copies of V(G), V_1, V_2
- V_1 is a clique, V_2 is an independent set
- $u \in V_1$ is adjacent to $v \in V_2$ iff $uv \in E(G)$ or u = v.

Simplicial vertices are not enough for this problem!

24/24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >