Graph Theory: Lecture 5 Coloring

Michael Lampis

October 18, 2024

- N /l + -	chao		2010
	спае	Lai	HUIS

Graph Theory: Lecture 5

October 18, 2024

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э

Coloring

Definition

For a graph G = (V, E) a **proper coloring** of G with k colors is a partition of V into k **independent** sets V_1, \ldots, V_k .

Definition

The **chromatic number** of *G*, denoted $\chi(G)$ is the smallest *k* for which *G* admits a proper *k*-coloring.

Definition

In the GRAPH COLORING problem we are given a graph G and are asked to determine $\chi(G)$.

Note: $\chi(G) \leq 2$ if and only if G is bipartite.

イロト 不得下 イヨト イヨト 二日

Examples

- N /I		b b b		100.00	
1.01	н.	пае	d		15

3/19

Examples

- N / I	1 Ch		0.000	010
1.01	IC.I.	ыег	Latur	UIS
				_

3/19

N/lic	bbbl	0.000	0.00
IVIIC.	паег		
		_	

3/19

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

N/lic	bbbl	0.000	0.00
IVIIC.	паег		
		_	

3/19

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique)

	-		æ	৩৫৫
Michael Lampis	Graph Theory: Lecture 5	October 18, 2024		4 / 19

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

• Construct a graph with $\chi({\sf G}) \geq \omega({\sf G}) + 1$

NALC	hae	1 2 2	mnic
TALL	-nae	Lai	כוטוו

3

(日)

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with χ(G) ≥ ω(G) + 1
 C₅
- Construct a graph with $\chi(G) \gg \omega(G)$

イロト 不得 トイヨト イヨト 二日

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with χ(G) ≥ ω(G) + 1
 C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
 - Will see a construction later...

イロト 不得 トイラト イラト 一日

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with χ(G) ≥ ω(G) + 1
 C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
 - Will see a construction later...
- GRAPH COLORING is in NP

3

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with χ(G) ≥ ω(G) + 1
 C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
 - Will see a construction later...
- GRAPH COLORING is in NP
 - Certificate is the coloring
- . . . but not in coNP (unless NP=coNP)

Colorings and Independent Sets

Theorem

For all graphs G, $\chi(G) \ge n/\alpha(G)$.

(Reminder: $\alpha(G)$: size of maximum independent set)

		・ロト・(部)・(音)・(音)・(音)	996
Michael Lampis	Graph Theory: Lecture 5	October 18, 2024	5 / 19

Colorings and Independent Sets

Theorem

For all graphs G, $\chi(G) \ge n/\alpha(G)$.

(Reminder: $\alpha(G)$: size of maximum independent set)

Proof.

- Suppose that $\chi < \frac{n}{lpha}$ and that the color classes are $V_1, V_2, \ldots, V_{\chi}.$
- Since each V_i is an independent set, $|V_i| \leq \alpha$.
- Then $|V| = \sum_{i \in [\chi]} |V_i| \le \chi \alpha < n$, contradiction!

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in $\{1, 2, ...\}$ that is not yet used by its neighbors.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in {1,2,...} that is not yet used by its neighbors.
- Worst case: the (at most Δ) neighbors of v_i use all colors in $\{1, \ldots, \Delta\}$, so v_i gets color $\Delta + 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in {1,2,...} that is not yet used by its neighbors.
- Worst case: the (at most Δ) neighbors of v_i use all colors in $\{1, \ldots, \Delta\}$, so v_i gets color $\Delta + 1$.

Can this be improved?

イロト イヨト イヨト ・

Lemma

There exists a graph G and an ordering of V(G) such that First-Fit uses strictly more than $\chi(G)$ colors.

э

イロト 不得 トイヨト イヨト

Lemma

There exists a graph G and an ordering of V(G) such that First-Fit uses strictly more than $\chi(G)$ colors.

NB: If the above were false, then we would have a P-time algorithm for GRAPH COLORING!

7/19

イロト 不得 トイヨト イヨト

Lemma

There exists a graph G and an ordering of V(G) such that First-Fit uses strictly more than $\chi(G)$ colors.

Example: P_4 , with ordering 1, 4, 2, 3.

			æ	୬୯୯
Michael Lampis	Graph Theory: Lecture 5	October 18, 2024		7 / 19

Lemma

There exists a graph G and an ordering of V(G) such that First-Fit uses strictly more than $\chi(G)$ colors.

Lemma

For all G, there exists an ordering of V(G) such that **First-Fit** uses $\chi(G)$ colors.

Lemma

There exists a graph G and an ordering of V(G) such that First-Fit uses strictly more than $\chi(G)$ colors.

Lemma

For all G, there exists an ordering of V(G) such that First-Fit uses $\chi(G)$ colors.

Proof.

Let V_1, V_2, \ldots, V_k be a proper coloring of G with k colors. We can use an ordering $V_1 \prec V_2 \prec \ldots V_k$.

		(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	গৰ্
Michael Lampis	Graph Theory: Lecture 5	October 18, 2024	7 / 19

Coloring and Degeneracy

Definition

The **degeneracy** of *G* is the minimum δ^* such that all subgraphs of *G* contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

イロト 不得 トイヨト イヨト

Coloring and Degeneracy

Definition

The **degeneracy** of *G* is the minimum δ^* such that all subgraphs of *G* contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Note that $\delta^* \leq \Delta$, because all subgraphs contain a vertex of degree Δ , so this is **better** than previous theorem.

Definition

The **degeneracy** of *G* is the minimum δ^* such that all subgraphs of *G* contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Proof.

By induction:

- Suppose statement true for G with $\leq n-1$ vertices.
- G contains a vertex of degree $\leq \delta^*$, call it v.
- $\delta^*(G v) \leq \delta^*(G)$, so by IH G v can be colored with δ^* colors.
- Use the smallest available color for v to extend this coloring to G.

Brooks' Theorem

			•	
- N / I -	ch.		0.000	0.00
1.01		аег	Lau	UIS

9/19

3

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

NIC	hael	l am	nic
1VIIC	naci	Lann	

3

10/19

イロト 不得 トイヨト イヨト

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Because $\delta^* \leq \Delta$, the first theorem implies the second.

3

(日)

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

NALC	h > 0		0.0010
IVIIC.	пае	Ldu	II DIS

10/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

• Cliques K_n have $\Delta = \delta^* = n - 1$, $\chi = n$

3

10/19

(日)

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta = n$, $\delta^* = 1$, $\chi = 2$

イロト イヨト イヨト ・

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta=n$, $\delta^*=1$, $\chi=2$

• Cycles
$$C_{2n+1}$$
 have $\Delta=2$, $\delta^*=2$, $\chi=3$

イロト イヨト イヨト ・

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta = n$, $\delta^* = 1$, $\chi = 2$
- Cycles C_{2n+1} have $\Delta=2$, $\delta^*=2$, $\chi=3$

Actually, cliques and odd cycles are **the only** cases where the second theorem is tight!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Brooks' Theorem

Theorem

For all G such that G is not a clique or an odd cycle, $\chi(G) \leq \Delta(G)$.

NAIC	b b b	DIC
IVIIC.	пае	IUIS.

イロト イヨト イヨト -

э

11 / 19

Brooks' Theorem

Theorem

For all G such that G is not a clique or an odd cycle, $\chi(G) \leq \Delta(G)$.

Proof.

Proof by minimal counter-example:

- Suppose G is the smallest (non-clique, non-odd-cycle) graph for which χ(G) ≥ Δ(G) + 1.
- We will reach a contradiction, assuming that the theorem is true for all graphs with fewer vertices.
- 3 cases:
 - G has a cut vertex
 - G has a vertex cut of size 2
 - G is 3-connected
- Assume throughout that $\Delta \geq 3$ and G is Δ -regular (why?)

Cut Vertex Case

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut vertex x.

- Let G_1, \ldots, G_k be the components of G v
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_i is Δ -colorable, wlog v has color 1

Cut Vertex Case

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut vertex x.

Proof.

- Let G_1, \ldots, G_k be the components of G v
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_i is Δ -colorable, wlog v has color 1
 - v has degree at most $\Delta 1$ in G'_i
 - If ${\cal G}'_i$ is a clique, then $\chi({\cal G}'_i) \leq \Delta$
 - If G_i' is an odd cycle, $\chi(G_i')=3\leq \Delta$
 - Otherwise G'_i is not a counter-example, so χ(G'_i) ≤ Δ.

1/10	hae	llar	nnic
10110	-nac		iipis

12/19

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Cut Vertex Case

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut vertex x.

Proof.

- Let G_1, \ldots, G_k be the components of G v
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_i is Δ -colorable, wlog v has color 1
 - v has degree at most $\Delta-1$ in G_i'
 - If ${\cal G}'_i$ is a clique, then $\chi({\cal G}'_i) \leq \Delta$
 - If G_i' is an odd cycle, $\chi(G_i')=3\leq \Delta$
 - Otherwise G'_i is not a counter-example, so $\chi(G'_i) \leq \Delta$.
- Gluing colorings together we get a Δ -coloring of G, contradiction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Cut of Size 2

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_i = G_i + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G'_i the edge xy (if it is not already there).
- G'_i is Δ -colorable, wlog x, y have colors 1, 2

Cut of Size 2

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_i = G_i + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G'_i the edge xy (if it is not already there).
- G'_i is Δ -colorable, wlog x, y have colors 1, 2
 - x, y have degree at most $\Delta 1$ in G'_i
 - Adding the edge xy makes their degrees at most Δ
 - If G'_i is a clique, then $\chi(G'_i) \leq \Delta + 1$ (!!!)
 - If G_i' is an odd cycle, $\chi(G_i')=3\leq \Delta$
 - Otherwise G'_i is not a counter-example, so $\chi(G'_i) \leq \Delta$.

Cut of Size 2

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_i = G_i + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G'_i the edge xy (if it is not already there).
- G'_i is Δ -colorable, wlog x, y have colors 1, 2
 - x, y have degree at most $\Delta 1$ in G'_i
 - Adding the edge xy makes their degrees at most Δ
 - If G'_i is a clique, then $\chi(G'_i) \leq \Delta + 1$ (!!!)
 - If G_i' is an odd cycle, $\chi(G_i')=3\leq \Delta$
 - Otherwise G'_i is not a counter-example, so $\chi(G'_i) \leq \Delta$.
- Gluing colorings together we get a Δ -coloring of G, contradiction.

Cut of Size 2 – Missing case

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Sticky case: G_1 is a clique of size $\Delta 1$, x, y are adjacent to all of G_1 .

Cut of Size 2 – Missing case

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

Proof.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Sticky case: G_1 is a clique of size $\Delta 1$, x, y are adjacent to all of G_1 .
 - There exists only one other component G_2 , x, y have degree 1 in G_2 .
 - Since $\Delta \ge 3$, there is a coloring of $G_2 + \{x, y\}$ where x, y receive the same color.
 - This coloring can be extended to a Δ -coloring of G.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
 - Consider the pair x, y with minimum distance. If the shortest path has length ≥ 3, x with the third vertex of the path make a better pair.

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
 - Consider the pair x, y with minimum distance. If the shortest path has length ≥ 3, x with the third vertex of the path make a better pair.
- {x, y} is not a separator. If G' is G where we remove all edges incident on x, y, except xz, yz, G' is connected.
- Run First-Fit on *G* for ordering $x, y, V \setminus \{x, y, z\}, z$, where $V \setminus \{x, y, z\}$ is ordered in decreasing distance from *z* in *G'*.

Assumption: G has $\chi(G) \ge \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
 - Consider the pair x, y with minimum distance. If the shortest path has length ≥ 3, x with the third vertex of the path make a better pair.
- {x, y} is not a separator. If G' is G where we remove all edges incident on x, y, except xz, yz, G' is connected.
- Run First-Fit on *G* for ordering $x, y, V \setminus \{x, y, z\}, z$, where $V \setminus \{x, y, z\}$ is ordered in decreasing distance from *z* in *G'*.
 - x, y receive color 1
 - All vertices of $V \setminus \{x, y, z\}$ have an uncolored neighbor when considered \Rightarrow at most Δ colors used in this part
 - z has two neighbors with identical color \Rightarrow receives color $\leq \Delta$.

Mycielski

ichael Lampis

Graph Theory: Lecture 5

October 18, 2024

<ロ> <四> <ヨ> <ヨ>

16 / 19

3

Colorings and Cliques (again)

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

- N /I	(ch)		- D 100 F	
1.01		нег	_ d I I II	15

э

17 / 19

(日)

Colorings and Cliques (again)

Theorem

For all graphs G, $\chi(G) \ge \omega(G)$.

This inequality is **NOT** tight in general!

• Otherwise we would have $\operatorname{Coloring} \in NP \cap coNP$

We will construct a triangle-free graph with arbitrarily large chromatic number.

イロト イヨト イヨト ・

Mycielski Construction

Definition

If G = (V, E) is a graph with $V = \{v_1, \ldots, v_n\}$, then G^* is the graph obtained by:

•
$$V(G^*) = V \cup U \cup \{w\}$$
, where $U = \{u_1, ..., u_n\}$

•
$$E(G^*) = E \cup \{v_i u_j, u_i v_j \mid v_i v_j \in E\} \cup \{wu_i \mid i \in [n]\}$$

э

18 / 19

イロト 不得 トイヨト イヨト

Mycielski Construction

Definition

If G = (V, E) is a graph with $V = \{v_1, \ldots, v_n\}$, then G^* is the graph obtained by:

•
$$V(G^*) = V \cup U \cup \{w\}$$
, where $U = \{u_1, \dots, u_n\}$

•
$$E(G^*) = E \cup \{v_i u_j, u_i v_j \mid v_i v_j \in E\} \cup \{wu_i \mid i \in [n]\}$$

In words:

- For each v_i we add a new "copy" u_i adjacent to the neighbors of v_i .
- However, the u_i 's are an independent set.
- We add a new vertex w adjacent to all other new vertices.

18 / 19

Mycielski Construction

Definition

If G = (V, E) is a graph with $V = \{v_1, \ldots, v_n\}$, then G^* is the graph obtained by:

•
$$V(G^*) = V \cup U \cup \{w\}$$
, where $U = \{u_1, ..., u_n\}$

•
$$E(G^*) = E \cup \{v_i u_j, u_i v_j \mid v_i v_j \in E\} \cup \{wu_i \mid i \in [n]\}$$

Example:

イロト 不得 トイヨト イヨト

3

Mycielski Construction Works

Theorem

$$\chi(G^*) = \chi(G) + 1.$$

Theorem

If G has no triangle, then G^* has no triangle.

- N / I		h > 0		100.00	
111	IC.	пае	I Lo		us.

3

19/19

・ロト ・四ト ・ヨト ・ヨト

Mycielski Construction Works

Theorem

$$\chi(G^*) = \chi(G) + 1.$$

Theorem

If G has no triangle, then G^* has no triangle.

Proof.

- w cannot be in a triangle, as its neighbors are independent.
- u_i, u_j cannot be together in a triangle.
- If v_i, v_j, u_k is a triangle, v_i, v_j, v_k is also a triangle.

- N / L L	cha	പിറ	mnic
TALL	Cillar	сі ца	mpis

< □ > < □ > < □ > < □ > < □ > < □ >

Mycielski Construction Works

Theorem

$$\chi(G^*) = \chi(G) + 1.$$

Theorem

If G has no triangle, then G^* has no triangle.

Proof.

•
$$\chi(G^*) \leq \chi(G) + 1$$
 is easy

• $\chi(G) \le \chi(G^*) - 1$:

- In an optimal coloring U is using $\chi(G^*) 1$ colors
- For v_i ∈ V with color χ(G^{*}), assign it the color of u_i; keep the other colors of V intact.

イロト イボト イヨト イヨト

э