Graph Theory: Lecture 5 **Coloring**

Michael Lampis

October 18, 2024

[Graph Theory: Lecture 5](#page-56-0) October 18, 2024 1/19

イロメ イ部メ イヨメ イヨメー

重

Coloring

Definition

For a graph $G = (V, E)$ a **proper coloring** of G with k colors is a partition of V into k **independent** sets V_1, \ldots, V_k .

Definition

The **chromatic number** of G, denoted $\chi(G)$ is the smallest k for which G admits a proper k-coloring.

Definition

In the GRAPH COLORING problem we are given a graph G and are asked to determine $\chi(G)$.

Note: $\chi(G)$ < 2 if and only if G is bipartite.

Examples

 2990

イロトメ 御 トメ 君 トメ 君 トッ 君

Examples

 2990

◆ロ→ ◆個→ ◆君→ →君→ →君。

 2990

イロトメ 御 トメ 君 トメ 君 トッ 君

Examples

 2990

イロン イ団 メイ君 メイ君 メー君

Colorings and Cliques

Theorem

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique)

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

• Construct a graph with $\chi(G) \ge \omega(G) + 1$

G.

 Ω

イロト イ母 トイヨ トイヨ トー

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with $\chi(G) \ge \omega(G) + 1$ \bullet C_5
- Construct a graph with $\chi(G) \gg \omega(G)$

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with $\chi(G) \ge \omega(G) + 1$ \bullet C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
	- Will see a construction later...

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with $\chi(G) \ge \omega(G) + 1$ \bullet C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
	- Will see a construction later...
- Graph Coloring is in NP

 Ω

イロト イ押 トイヨ トイヨ トーヨ

For all graphs G, $\chi(G) \geq \omega(G)$.

(Reminder: $\omega(G)$: size of maximum clique) This is **not** an equivalence!

- Construct a graph with $\chi(G) \ge \omega(G) + 1$ \bullet C₅
- Construct a graph with $\chi(G) \gg \omega(G)$
	- Will see a construction later. . .
- Graph Coloring is in NP
	- Certificate is the coloring
- \bullet ... but not in $coNP$ (unless $NP = coNP$)

G.

 Ω

イロト イ母 トイヨ トイヨ トー

Colorings and Independent Sets

Theorem

For all graphs G, $\chi(G) \ge n/\alpha(G)$.

(Reminder: $\alpha(G)$: size of maximum independent set)

Colorings and Independent Sets

Theorem

For all graphs G, $\chi(G) > n/\alpha(G)$.

(Reminder: $\alpha(G)$: size of maximum independent set)

Proof.

- Suppose that $\chi < \frac{n}{\alpha}$ and that the color classes are $V_1, V_2, \ldots, V_{\chi}.$
- Since each V_i is an independent set, $|V_i| \leq \alpha.$
- Then $|V| = \sum_{i \in [\chi]} |V_i| \leq \chi \alpha < \textit{n}$, contradiction!

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in $\{1, 2, ...\}$ that is not yet used by its neighbors.

 200

イロト イ押ト イヨト イヨト

Theorem

For all graphs G, $\chi(G) < \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in $\{1, 2, ...\}$ that is not yet used by its neighbors.
- Worst case: the (at most Δ) neighbors of v_i use all colors in $\{1,\ldots,\Delta\}$, so v_i gets color $\Delta+1$.

イロト イ押ト イヨト イヨト

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

(Reminder: $\Delta(G)$: maximum degree)

Proof.

First-Fit algorithm:

- Consider vertices in some order v_1, v_2, \ldots, v_n
- For each v_i assign to it the minimum color in $\{1, 2, ...\}$ that is not yet used by its neighbors.
- Worst case: the (at most Δ) neighbors of v_i use all colors in $\{1,\ldots,\Delta\}$, so v_i gets color $\Delta+1$.

Can this be improved?

イロト (個) (④) (ミト (重) (

Lemma

There exists a graph G and an ordering of $V(G)$ such that First-Fit uses strictly more than $\chi(G)$ colors.

Lemma

There exists a graph G and an ordering of $V(G)$ such that First-Fit uses strictly more than $\chi(G)$ colors.

NB: If the above were false, then we would have a P-time algorithm for Graph Coloring!

 QQQ

イロト イ押 トイヨ トイヨ トー

Lemma

There exists a graph G and an ordering of $V(G)$ such that First-Fit uses strictly more than $\chi(G)$ colors.

Example: P_4 , with ordering 1, 4, 2, 3.

 QQQ

ヨメ イヨメー

Lemma

There exists a graph G and an ordering of $V(G)$ such that First-Fit uses strictly more than $\chi(G)$ colors.

Lemma

For all G, there exists an ordering of $V(G)$ such that First-Fit uses $\chi(G)$ colors.

 Ω

イロト イ押 トイヨ トイヨ トー

Lemma

There exists a graph G and an ordering of $V(G)$ such that First-Fit uses strictly more than $\chi(G)$ colors.

Lemma

For all G, there exists an ordering of $V(G)$ such that First-Fit uses $\chi(G)$ colors.

Proof.

Let V_1, V_2, \ldots, V_k be a proper coloring of G with k colors. We can use an ordering $V_1 \prec V_2 \prec \ldots V_k$.

Definition

The degeneracy of G is the minimum δ^* such that all subgraphs of G contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

 200

イロト イ押 トイヨ トイヨ トー

Definition

The degeneracy of G is the minimum δ^* such that all subgraphs of G contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Note that $\delta^* \leq \Delta$, because all subgraphs contain a vertex of degree Δ , so this is **better** than previous theorem.

 QQQ

イロト イ押 トイヨ トイヨ トー

Definition

The degeneracy of G is the minimum δ^* such that all subgraphs of G contain a vertex of degree at most δ^* .

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Proof.

By induction:

- Suppose statement true for G with $\leq n-1$ vertices.
- G contains a vertex of degree $\leq \delta^*$, call it v.
- $\delta^*(G v) \leq \delta^*(G)$, so by IH $G v$ can be colored with δ^* colors.
- \bullet Use the smallest available color for v to extend this coloring to G.

[Brooks' Theorem](#page-26-0)

Ε

 2990

イロメ イ部メ イヨメ イヨメー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

目

 QQ

イロト イ押 トイヨ トイヨ トー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Because $\delta^* \leq \Delta$, the first theorem implies the second.

目

 QQQ

イロト イ母 トイヨ トイヨ トー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

э

 QQQ

イロト イ押 トイヨ トイヨ トー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

Cliques K_n have $\Delta = \delta^* = n - 1$, $\chi = n$

目

 QQQ

イロト イ母 トイヨ トイヨ トー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta = n$, $\delta^* = 1$, $\chi = 2$

目

 QQQ

イロト イ押 トイヨ トイヨ トー

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) \leq \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta = n$, $\delta^* = 1$, $\chi = 2$
- Cycles C_{2n+1} have $\Delta = 2$, $\delta^* = 2$, $\chi = 3$

イロト イ押 トイヨ トイヨ トーヨ

Theorem

For all G we have $\chi(G) \leq \delta^*(G) + 1$.

Theorem

For all graphs G, $\chi(G) < \Delta(G) + 1$.

Are these theorems tight?

- Cliques K_n have $\Delta = \delta^* = n 1$, $\chi = n$
- Stars $K_{1,n}$ have $\Delta = n$, $\delta^* = 1$, $\chi = 2$
- Cycles C_{2n+1} have $\Delta = 2$, $\delta^* = 2$, $\chi = 3$

Actually, cliques and odd cycles are the only cases where the second theorem is tight!

 QQQ

イロト イ何 トイヨト イヨト ニヨー

Brooks' Theorem

Theorem

For all G such that G is not a clique or an odd cycle, $\chi(G) \leq \Delta(G)$.

イロト イ押 トイヨ トイヨ トー

÷.

 QQ

Brooks' Theorem

Theorem

For all G such that G is not a clique or an odd cycle, $\chi(G) \leq \Delta(G)$.

Proof.

Proof by minimal counter-example:

- Suppose G is the smallest (non-clique, non-odd-cycle) graph for which $\chi(G) \geq \Delta(G) + 1$.
- We will reach a contradiction, assuming that the theorem is true for all graphs with fewer vertices.
- 3 cases:
	- **a** G has a cut vertex
	- G has a vertex cut of size 2
	- G is 3-connected
- Assume t[h](#page-26-0)roughout that $\Delta > 3$ $\Delta > 3$ $\Delta > 3$ and G is Δ -re[gu](#page-36-0)l[ar](#page-34-0) [\(](#page-36-0)[w](#page-25-0)h[y](#page-47-0)[?](#page-48-0)[\)](#page-25-0)

Cut Vertex Case

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut vertex x.

- Let G_1, \ldots, G_k be the components of $G v$
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_{i} is Δ -colorable, wlog v has color 1

Cut Vertex Case

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut vertex x.

- Let G_1, \ldots, G_k be the components of $G v$
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_{i} is Δ -colorable, wlog v has color 1
	- v has degree at most $\Delta 1$ in G_i'
	- If $\vert G_i'\vert$ is a clique, then $\chi(\vert G_i'\vert)\leq \Delta$
	- If G'_i is an odd cycle, $\chi(G'_i)=3\leq \Delta$
	- Otherwise G_i' is not a counter-example, so $\chi(G_i') \leq \Delta$.

Cut Vertex Case

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut vertex x.

Proof.

- Let G_1, \ldots, G_k be the components of $G v$
- Let $G'_i = G_i + v$ (where we keep all edges of G incident on v in G_i).
- G'_{i} is Δ -colorable, wlog v has color 1
	- v has degree at most $\Delta 1$ in G_i'
	- If $\vert G_i'\vert$ is a clique, then $\chi(\vert G_i'\vert)\leq \Delta$
	- If G'_i is an odd cycle, $\chi(G'_i)=3\leq \Delta$
	- Otherwise G_i' is not a counter-example, so $\chi(G_i') \leq \Delta$.
- Gluing colorings together we get a Δ -coloring of G, contradiction.

KED KARD KED KED E VOOR

Cut of Size 2

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_{i} = G_{i} + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G_i' the edge xy (if it is not already there).
- G_i' is Δ -colorable, wlog x, y have colors 1, 2

Cut of Size 2

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_{i} = G_{i} + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G_i' the edge xy (if it is not already there).
- G_i' is Δ -colorable, wlog x, y have colors 1, 2
	- x,y have degree at most $\Delta 1$ in G_i'
	- Adding the edge xy makes their degrees at most Δ
	- If G'_i is a clique, then $\chi(G'_i) \leq \Delta + 1$ (!!!)
	- If G'_i is an odd cycle, $\chi(G'_i)=3\leq \Delta$
	- Otherwise G_i' is not a counter-example, so $\chi(G_i') \leq \Delta$.

Cut of Size 2

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Let $G'_{i} = G_{i} + \{x, y\}$ (where we keep all edges of G incident on x, y in G_i).
- Furthermore, add to G_i' the edge xy (if it is not already there).
- G_i' is Δ -colorable, wlog x, y have colors 1, 2
	- x,y have degree at most $\Delta 1$ in G_i'
	- Adding the edge xy makes their degrees at most Δ
	- If G'_i is a clique, then $\chi(G'_i) \leq \Delta + 1$ (!!!)
	- If G'_i is an odd cycle, $\chi(G'_i)=3\leq \Delta$
	- Otherwise G_i' is not a counter-example, so $\chi(G_i') \leq \Delta$.
- Gluing colorings together we get a Δ -coloring of G, contradiction.

Cut of Size 2 – Missing case

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- Sticky case: G_1 is a clique of size $\Delta 1$, x, y are adjacent to all of G_1 .

Cut of Size 2 – Missing case

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G has a cut set $\{x, y\}$.

Proof.

- Let G_1, \ldots, G_k be the components of $G \{x, y\}$
- \bullet Sticky case: G_1 is a clique of size $\Delta 1$, x, y are adjacent to all of G_1 .
	- There exists only one other component G_2 , x, y have degree 1 in G_2 .
	- Since $\Delta \geq 3$, there is a coloring of $G_2 + \{x, y\}$ where x, y receive the same color.
	- This coloring can be extended to a Δ -coloring of G.

- വൈറ

イロト イ押 トイヨ トイヨ トーヨ

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
	- Consider the pair x, y with minimum distance. If the shortest path has length > 3 , x with the third vertex of the path make a better pair.

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
	- Consider the pair x, y with minimum distance. If the shortest path has length > 3 , x with the third vertex of the path make a better pair.
- $\{x, y\}$ is not a separator. If G' is G where we remove all edges incident on x, y , except xz, yz, G' is connected.
- Run First-Fit on G for ordering $x, y, V \setminus \{x, y, z\}, z$, where $V \setminus \{x, y, z\}$ is ordered in decreasing distance from z in G'.

Assumption: G has $\chi(G) \geq \Delta(G) + 1$ and G is 3-connected.

- Since G is not a clique, there exist $x, y \in V$ with $xy \notin E$.
- In fact, there exist such x, y with distance 2 (common neighbor z)
	- Consider the pair x, y with minimum distance. If the shortest path has length > 3 , x with the third vertex of the path make a better pair.
- $\{x, y\}$ is not a separator. If G' is G where we remove all edges incident on x, y , except xz, yz, G' is connected.
- Run First-Fit on G for ordering $x, y, V \setminus \{x, y, z\}, z$, where $V \setminus \{x, y, z\}$ is ordered in decreasing distance from z in G'.
	- \bullet x, y receive color 1
	- All vertices of $V \setminus \{x, y, z\}$ have an uncolored neighbor when considered \Rightarrow at most Δ colors used in this part
	- z has two neighbors with identical color \Rightarrow receives color $\leq \Delta$.

[Mycielski](#page-48-0)

 $\frac{1}{2}$ [Graph Theory: Lecture 5](#page-0-0) October 18, 2024 16 / 19

イロトメ 御 トメ 差 トメ 差 トー

店

[Mycielski](#page-48-0)

Colorings and Cliques (again)

Theorem

For all graphs G, $\chi(G) \geq \omega(G)$.

D.

 299

イロメ イ部メ イヨメ イヨメー

Colorings and Cliques (again)

Theorem

For all graphs G, $\chi(G) \geq \omega(G)$.

This inequality is **NOT** tight in general!

Otherwise we would have Coloring∈NP∩coNP

We will construct a triangle-free graph with arbitrarily large chromatic number.

 QQQ

イロト イ押 トイヨ トイヨ トー

Mycielski Construction

Definition

If $G=(V,E)$ is a graph with $V=\{v_1,\ldots,v_n\}$, then G^* is the graph obtained by:

•
$$
V(G^*) = V \cup U \cup \{w\}, \text{ where } U = \{u_1, \ldots, u_n\}
$$

$$
\bullet \ \ E(G^*) = E \cup \{v_iu_j, u_iv_j \mid v_iv_j \in E\} \cup \{wu_i \mid i \in [n]\}
$$

G.

 QQ

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Mycielski Construction

Definition

If $G=(V,E)$ is a graph with $V=\{v_1,\ldots,v_n\}$, then G^* is the graph obtained by:

\n- \n
$$
V(G^*) = V \cup U \cup \{w\},
$$
\n where\n $U = \{u_1, \ldots, u_n\}$ \n
\n- \n $E(G^*) = E \cup \{v_i u_j, u_i v_j \mid v_i v_j \in E\} \cup \{w u_i \mid i \in [n]\}$ \n
\n

In words:

- For each v_i we add a new "copy" u_i adjacent to the neighbors of v_i .
- However, the u_i 's are an independent set.
- We add a new vertex w adjacent to all other new vertices.

KED KARD KED KED E VOOR

Mycielski Construction

Definition

If $G=(V,E)$ is a graph with $V=\{v_1,\ldots,v_n\}$, then G^* is the graph obtained by:

\n- \n
$$
V(G^*) = V \cup U \cup \{w\}
$$
, where $U = \{u_1, \ldots, u_n\}$ \n
\n- \n $E(G^*) = E \cup \{v_i u_j, u_i v_j \mid v_i v_j \in E\} \cup \{w u_i \mid i \in [n]\}$ \n
\n

Example:

目

 QQ

イロト イ母 トイヨ トイヨ トー

Mycielski Construction Works

Theorem

$$
\chi(G^*)=\chi(G)+1.
$$

Theorem

If G has no triangle, then G^* has no triangle.

D.

 QQ

イロト イ部 トイモト イモト

Mycielski Construction Works

Theorem

$$
\chi(G^*)=\chi(G)+1.
$$

Theorem

If G has no triangle, then G^* has no triangle.

Proof.

- w cannot be in a triangle, as its neighbors are independent.
- u_i, u_j cannot be together in a triangle.
- If v_i, v_j, u_k is a triangle, v_i, v_j, v_k is also a triangle.

イロト イ押 トイヨ トイヨ トー

Mycielski Construction Works

Theorem

$$
\chi(G^*)=\chi(G)+1.
$$

Theorem

If G has no triangle, then G^* has no triangle.

Proof.

$$
\bullet\,\ \chi(\mathsf{G}^*)\leq \chi(\mathsf{G})+1\,\,\hbox{is easy}
$$

 $\chi(G) \leq \chi(G^*) - 1$:

- In an optimal coloring U is using $\chi(\bar{G}^*)-1$ colors
- For $v_i \in V$ with color $\chi(G^*)$, assign it the color of u_i ; keep the other colors of V intact.

イロメス 御き スミメス ミメー

G.