Graph Theory: Lecture 4 Cuts, Connectivity, Flows

Michael Lampis

September 30, 2024

E

 299

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Definition

A vertex separator or vertex cut is a set of vertices S such that $G - S$ is disconnected.

◂**◻▸ ◂◚▸**

э

Vertex and Edge Cuts

Definition

A vertex separator or vertex cut is a set of vertices S such that $G - S$ is disconnected.

Variants:

- Edge separator \rightarrow edge set whose removal disconnects G
- \bullet XY-separator \rightarrow separator that disconnects vertex set X from vertex set Y (without intersecting X, Y)
- xy-separator $\rightarrow \{x\}\{y\}$ -separator

Special cases:

- If a separator $S = \{x\}$, then x is a cut vertex
- If an edge cut $H = \{e\}$, then e is a cut edge or bridge

Understanding the definitions

Þ \prec

K ロ ▶ K 倒 ▶

重

 299

Understanding the definitions

- $\bullet \{b, e\}$ is a vertex cut (indeed an af-cut, and an $\{a, c\}\{d, f\}$ -cut)
- e is a cut vertex
- \bullet {bd, be, ce} is an edge cut
- \bullet *ef* is a bridge

4 0 F

 Ω

Understanding the definitions

- $\bullet \{b, e\}$ is a vertex cut (indeed an af-cut, and an $\{a, c\}\{d, f\}$ -cut)
- e is a cut vertex
- \bullet {bd, be, ce} is an edge cut
- \bullet *ef* is a bridge

Theorem

In a tree, every edge is a bridge, every non-leaf vertex is a cut vertex.

← ロ → → ← 何 →

 QQQ

э

A basic inequality

Definition

- $\kappa(G)$ is the size of the smallest vertex separator of G.
- $\kappa'(G)$ is the size of the smallest $\operatorname{\sf edge}$ separator of $G.$
- \bullet $\delta(G)$ is the minimum degree of G.

 QQQ

イロト イ母 トイヨ トイヨ トー

A basic inequality

Definition

- $\kappa(G)$ is the size of the smallest vertex separator of G.
- $\kappa'(G)$ is the size of the smallest $\operatorname{\sf edge}$ separator of $G.$
- \bullet $\delta(G)$ is the minimum degree of G.

Theorem

 $\kappa(G) \leq \kappa'(G) \leq \delta(G)$

 Ω

医单侧 医单位

◂**◻▸ ◂◚▸**

A basic inequality

Definition

- $\kappa(G)$ is the size of the smallest vertex separator of G.
- $\kappa'(G)$ is the size of the smallest $\operatorname{\sf edge}$ separator of $G.$
- $\delta(G)$ is the minimum degree of G.

Theorem

 $\kappa(G) \leq \kappa'(G) \leq \delta(G)$

Proof.

- $\kappa(\overline{G})\leq \kappa'(\overline{G})$ because I can select one endpoint of each edge of a min edge cut
- $\kappa'(G)\leq \delta(G)$ because I can select all edges incident on a vertex v of min degree

Definition

- $\kappa_{x,y}(G)$: min xy-vertex cut
- $\operatorname{vdp}_{x,y}(G)$: max number of vertex disjoint $x\to y$ paths

 QQ

K ロ > K d > K 글 > K 글 > H 글

Definition

- \circ $\kappa_{x,y}(G)$: min xy-vertex cut
- $\operatorname{vdp}_{x,y}(G)$: max number of vertex disjoint $x\to y$ paths

Lemma

For all G, x, y we have $\kappa_{x,y}(G) \geq {\rm vdp}_{x,y}(G)$

 QQQ

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Definition

- $\kappa_{x,y}(G)$: min xy-vertex cut
- $\operatorname{vdp}_{x,y}(G)$: max number of vertex disjoint $x\to y$ paths

Lemma

For all
$$
G, x, y
$$
 we have $\kappa_{x,y}(G) \geq \text{vdp}_{x,y}(G)$.

Proof.

- Every separator must intersect all paths from x to y .
- **If we have k disjoint such paths** \Rightarrow **need** $\geq k$ **vertices to hit them.**

Definition

- $\kappa_{x,y}(G)$: min xy-vertex cut
- $\operatorname{vdp}_{x,y}(G)$: max number of vertex disjoint $x\to y$ paths

Lemma

For all G, x, y we have $\kappa_{x,y}(G) \geq {\rm vdp}_{x,y}(G)$

 QQQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Definition

- $\kappa_{x,y}(G)$: min xy-vertex cut
- $\operatorname{vdp}_{x,y}(G)$: max number of vertex disjoint $x\to y$ paths

Lemma

For all G, x, y we have $\kappa_{x,y}(G) \geq {\rm vdp}_{x,y}(G)$

 QQQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Main Message

Lemma

For all G, x, y we have $\kappa_{x,y}(G) \geq {\rm vdp}_{x,y}(G)$

重

 299

イロメ イ部メ イヨメ イヨメー

Main Message

Lemma

For all G, x, y we have $\kappa_{x,y}(G) \geq {\rm vdp}_{x,y}(G)$

Theorem

For all G, x, y we have $\kappa_{x,y}(G) = \text{vdp}_{x,y}(G)$

- Result known as Menger's theorem
- Implies: decide min-cut value is in NP∩coNP
- Also holds for edge cuts/edge-disjoint paths

◂**◻▸ ◂◚▸**

 Ω

[The case](#page-16-0) $k = 2$

 2990

メロトメ 御 トメ 君 トメ 君 トー 君

Theorem

 $G = (V, E)$ is 2-connected if and only if for each $u, v \in V$ there exist two disjoint $u \rightarrow v$ paths in G.

目

 QQ

イロト イ押 トイヨ トイヨ トー

Theorem

 $G = (V, E)$ is 2-connected if and only if for each $u, v \in V$ there exist two disjoint $u \rightarrow v$ paths in G.

Note: 2-connected \Leftrightarrow min vertex cut has size ≥ 2

◂**◻▸ ◂◚▸**

Theorem

 $G = (V, E)$ is 2-connected if and only if for each $u, v \in V$ there exist two disjoint $u \rightarrow v$ paths in G.

Proof.

⇐:

- **•** If there exists two disjoint $u \rightarrow v$ paths, then all uv-separators have size at least 2.
- \bullet This is true for all u, v , so all separators have size at least 2.

Theorem

 $G = (V, E)$ is 2-connected if and only if for each $u, v \in V$ there exist two disjoint $u \rightarrow v$ paths in G.

Proof.

 \Rightarrow : all separators have size ≥ 2 , $\Rightarrow \forall u, v$ we have two disjoint $u \rightarrow v$ paths Proof by induction:

- \bullet Induction on distance of u, v
- If $d(u, v) = 1$ (i.e. $uv \in E$) \Rightarrow
- $\kappa' \geq \kappa \geq 2$, therefore $\overline{G}-\mu\nu$ is connected
- $\bullet \Rightarrow$ there are two disjoint paths $u \rightarrow v$ in G

(□) (/ □)

 Ω

Theorem

 $G = (V, E)$ is 2-connected if and only if for each $u, v \in V$ there exist two disjoint $u \rightarrow v$ paths in G.

Proof.

 \Rightarrow : all separators have size > 2, \Rightarrow ∀u, v we have two disjoint $u \rightarrow v$ paths Inductive step:

• $d(u, v) = k$, let w be last vertex of $u \rightarrow v$ path of length k

$$
\bullet \; d(u,w)=k-1
$$

• Inductive hypothesis: exist two disjoint $u \rightarrow w$ paths

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

- We have two disjoint paths $u \to w$
- Need two disjoint paths $u \rightarrow v$

 \sim

∢ □ ▶ ⊣ *←* □

э

 298

 \bullet If v is in one of the two paths, DONE!

٠ \sim

← ロ → → ← 何 →

 299

目

 \bullet Otherwise, recall that v is adjacent to w

 \sim

← ロ → → ← 何 →

 299

目

- \bullet *G* − *w* is connected (as κ (*G*) ≥ 2)
- There exists $u \rightarrow v$ path in $G w$

э

 QQ

Þ

 \mathcal{A} .

◂**◻▸ ◂◚▸**

• If this path is disjoint from other two, DONE!

 \sim

4 ロ ▶ (母

 299

目

. If this path is disjoint from one of the other two, DONE!

◂**◻▸ ◂◚▸**

目

 298

Otherwise:

- z is last common vertex of new path and two old paths
- Construct two $u \rightarrow v$ paths:
	- Take first old path up to z, then continue with new path to ν
	- \bullet Take second old path up to w, continue to v

◂**◻▸ ◂◚▸**

 Ω

重

 2990

イロメ イ部メ イヨメ イヨメン

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

G.

 QQ

イロト イ押 トイヨ トイヨ トー

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

ミメスミメ

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

ミメスミメ

→ 母

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

ミメスミメ

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with xy $\notin E$, then the minimum size of an xy -cut is equal to the maximum number of vertex-disjoint $x \rightarrow y$ -paths.

 Ω

ミドマミド

⊣●●

Menger's Theorem (proof)

- \bullet S is a min xy-separator of size k
- Will prove by induction that there are $k \times \rightarrow y$ disjoint paths

∢ □ ▶ ⊣ *←* □

 Ω

Menger's Theorem (proof)

If S contains a common neighbor of x, y, say s_k , remove it

 \rightarrow \equiv \rightarrow 目

4 ロ ▶ (母

Menger's Theorem (proof)

- \bullet S − s_k is a min-cut of the new graph of size $k 1$
- Inductive hypothesis \Rightarrow exist $k 1$ disjoint paths

4 D F

Menger's Theorem (proof)

- \bullet S − s_k is a min-cut of the new graph of size $k 1$
- Inductive hypothesis \Rightarrow exist $k 1$ disjoint paths

◂**◻▸ ◂◚▸**

一本 語 (を) … э

Menger's Theorem (proof)

- Inductive hypothesis \Rightarrow exist $k 1$ disjoint paths
- Together with $x \rightarrow s_k \rightarrow y$ we have k disjoint paths

◂**◻▸ ◂◚▸**

一本 語 (を) … э

- Suppose then that $N(x) \cap N(y) = \emptyset$
- Let e be an edge not incident on x, y
- Remove it to get $G e$

4 0 F

э

- Suppose then that $N(x) \cap N(y) = \emptyset$
- \bullet Let *e* be an edge not incident on *x*, *y*
- Remove it to get $G e$

4 0 F

э

- Suppose then that $N(x) \cap N(y) = \emptyset$
- \bullet Let *e* be an edge not incident on *x*, *y*
- Remove it to get $G e$

∢ 口 ≯ ∢ 何

э

• S is a min xy-separator of $G - e$

\n- $$
|S| \geq k
$$
?
\n- $|S| = k - 1$?
\n- $|S| \leq k - 2$?
\n

Þ

4 ロ ▶ (母

D.

 299

Menger's Theorem (proof)

- Interesting case: $|S| = k 1$
- $\bullet \Rightarrow |S|$ is not an xy-separator in G
- $\bullet \Rightarrow$ there is an $x \rightarrow y$ path in $G S$ which must use e

 OQ

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Menger's Theorem (proof)

- Consider "left" part and add new vertex x' connected to $S\cup \{v_1\}$
- This graph is smaller than $G \Rightarrow$ inductive hypothesis
- Min xx'-separator has size $\geq k$

 Ω

Menger's Theorem (proof)

- Min xx $^{\prime}$ -separator has size $\geq k$
	- If there exists xx' -separator of size $k-1$, this would also be an xy-separator in G

Michael Lampis [Graph Theory: Lecture 4](#page-0-0) September 30, 2024 12 / 18

4 D F

 \Rightarrow

Menger's Theorem (proof)

- Inductive hypothesis $\Rightarrow k$ disjoint paths from $x \rightarrow x'$
- $\bullet \Rightarrow k$ disjoint paths from $x \to S \cup \{v_1\}$
- Symmetrically. . . \Rightarrow k disjoint paths from $y \rightarrow S \cup \{v_2\}$
- $\bullet \Rightarrow k$ disjoint $x \rightarrow y$ paths

◂**◻▸ ◂Π** ▸

医单头 人名

Déjà vu ?

 QQ

メロトメ 御 トメ 君 トメ 君 トッ 君

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

D.

 2990

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

重

 299

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

重

 299

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

D.

 299

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

- Edges of matching \rightarrow vertex-disjoint $s \rightarrow t$ paths
- Vertices of vertex cover $\rightarrow st$ separator

◂**◻▸ ◂◚▸**

目

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

Conclusion:

Menger's theorem \Rightarrow Kőnig's theorem

 QQ

イロト イ押 トイヨ トイヨ トー

Michael Lampis [Graph Theory: Lecture 4](#page-0-0) September 30, 2024 15/18

 2990

K ロ > K @ > K 할 > K 할 > 시 할

Definition

For a graph $G = (V, E)$, the **line graph** $L(G)$ is defined as follows:

$$
\bullet \ \ V(L(G))=E
$$

• For $e_1, e_2 \in E$ we have $e_1e_2 \in E(L(G))$ iff e_1e_2 is a path of length 2.

 Ω

KID KA KA SA KE KI E

Definition

For a graph $G = (V, E)$, the **line graph** $L(G)$ is defined as follows:

- $V(L(G)) = E$
- For $e_1, e_2 \in E$ we have $e_1e_2 \in E(L(G))$ iff e_1e_2 is a path of length 2.

(□) (_□

目

 QQQ

Definition

For a graph $G = (V, E)$, the **line graph** $L(G)$ is defined as follows:

- $V(L(G)) = E$
- For $e_1, e_2 \in E$ we have $e_1e_2 \in E(L(G))$ iff e_1e_2 is a path of length 2.

◂**◻▸ ◂◚▸**

 Ω

Definition

For a graph $G = (V, E)$, the **line graph** $L(G)$ is defined as follows:

- $V(L(G)) = E$
- For $e_1, e_2 \in E$ we have $e_1e_2 \in E(L(G))$ iff e_1e_2 is a path of length 2.

Line graphs of:

- Paths? Cycles?
- Trees? Bipartite graphs?

 Ω

KID KA KA SA KE KI E

Menger's Theorem for Edges

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with $x \neq y$, then the minimum size of an xy-edge cut is equal to the maximum number of edge-disjoint $x \rightarrow y$ -paths.

 QQ

イロト イ押 トイヨ トイヨ トー

Menger's Theorem for Edges

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with $x \neq y$, then the minimum size of an xy-**edge cut** is equal to the maximum number of edge-disjoint $x \rightarrow y$ -paths.

Proof.

- Add x' adjacent to x , y' adjacent to y to obtain G' .
- Idea: edge-disjoint $x \to y$ paths in $G' \Leftrightarrow$ vertex-disjoint $xx' \to yy'$ paths in $L(G')$
- Edge xy-cuts in $G' \Leftrightarrow$ Vertex $(xx')(yy')$ -cuts in $L(G')$

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

Menger's Theorem for Edges

Theorem

(Menger 1927) If x, y are vertices of $G = (V, E)$ with $x \neq y$, then the minimum size of an xy-**edge cut** is equal to the maximum number of edge-disjoint $x \rightarrow y$ -paths.

Proof.

- Add x' adjacent to x , y' adjacent to y to obtain G' .
- Idea: edge-disjoint $x \to y$ paths in $G' \Leftrightarrow$ vertex-disjoint $xx' \to yy'$ paths in $L(G')$
- Edge xy-cuts in $G' \Leftrightarrow$ Vertex $(xx')(yy')$ -cuts in $L(G')$
- Apply Menger's theorem to $L(G')$

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

Max-Flow/Min-Cut

- All previous results also generalize to **directed** graphs
	- Both vertex and edge versions...
- Same holds even if add capacities to the edges
	- If edge has capacity c, there can be at most c paths using it.
	- Normal version: $c = 1$ everywhere

∢ □ ▶ ◀ [□] ▶ ◀

[Edge Cuts](#page-57-0)

Max-Flow/Min-Cut

- All previous results also generalize to **directed** graphs
	- Both vertex and edge versions...
- Same holds even if add capacities to the edges
	- If edge has capacity c, there can be at most c paths using it.
	- Normal version: $c = 1$ everywhere

Theorem

In a directed weighted digraph $G = (V, E)$ for s, $t \in V$ we have that the maximum **flow** from s to t is equal to the capacity of the minimum st-cut.

 QQQ