Graph Theory: Lecture 3 **Bipartite Graphs**

Michael Lampis

September 17, 2024

1 /1	bool	0.000	0.10
	лаег		U.S.

Graph Theory: Lecture 3

 → September 17, 2024

3

1/21

Image: A matrix and a matrix

Bipartite Graphs and Matchings

Michael Lampis

Graph Theory: Lecture 3

∃ ⇒ September 17, 2024

2/21

Definition

A graph G = (V, E) is **bipartite** if V can be partitioned into two independent sets A, B.

3

イロト 不得 トイヨト イヨト

Definition

A graph G = (V, E) is **bipartite** if V can be partitioned into two independent sets A, B.

Examples:

Definition

A graph G = (V, E) is **bipartite** if V can be partitioned into two independent sets A, B.

э

Definition

A graph G = (V, E) is **bipartite** if V can be partitioned into two independent sets A, B.

Relation with:

- Paths?
- Cycles?
- Trees?
- Cliques?

3

イロト 不得下 イヨト イヨト

Definition

A graph G = (V, E) is **bipartite** if V can be partitioned into two independent sets A, B.

Definition

A graph G = (V, E) is k-colorable if V can be partitioned into k independent sets.

- GRAPH COLORING is a notorious graph problem.
- Deciding if a graph is bipartite is the special case for k = 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why care about bipartite graphs?

N/lic	220	DIC
	lac.	015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Why care about bipartite graphs?

- Come up naturally when we have two groups of elements and only care about relations from one group to the other.
- What structure arises from this restriction?
- Can we use it algorithmically?

Basic Facts

Michael Lampis

Graph Theory: Lecture 3

September 17, 2024

<ロ> <四> <ヨ> <ヨ>

5/21

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

NALC	hae		nnic
TALL	лас	Lai	כוטוו

Image: Image:

э

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.

 $\mathsf{Bipartite} \Rightarrow \mathsf{No} \mathsf{ odd} \mathsf{ cycle}:$

Easy: C_{2k+1} is **not** bipartite, bipartiteness is preserved by subgraphs, so if C_{2k+1} ⊆ G, then G is not bipartite.

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.

 $\mathsf{Bipartite} \leftarrow \mathsf{No} \mathsf{ odd} \mathsf{ cycle}:$

- Let x be a vertex of G, V_1 vertices at odd distance from x, $V_2 = V \setminus V$, distances at even distance from x.
- Claim: V_1, V_2 are independent sets.
 - Take $y, z \in V_1$, shortest $x \to y, x \to z$ paths.
 - Let x' be the last common vertex of these paths.
 - x'
 ightarrow y, x'
 ightarrow z paths have the same parity.
 - If $yz \in E$ we have an odd cycle, contradiction!

Problem

Given G, decide if G is bipartite.

NALC	hae		nnic
TALL	лас	Lai	כוטוו

イロト 不得 トイヨト イヨト

Problem

Given G, decide if G is bipartite.

Is in NP

ΝЛ	10	lb n	- L	 1000 10	100
IVI	н.	110		 	15

イロト 不得 トイヨト イヨト

Problem

Given G, decide if G is bipartite.

- Is in NP
 - Certificate is the bipartition.
- Is in coNP

3

Problem

Given G, decide if G is bipartite.

- Is in NP
 - Certificate is the bipartition.
- Is in coNP
 - Counter-certificate is an odd cycle.

Image: A matrix

э

Problem

Given G, decide if G is bipartite.

- Is in NP
 - Certificate is the bipartition.
- Is in coNP
 - Counter-certificate is an odd cycle.
- \Rightarrow is in NP \cap coNP
- In fact is in P

Proof.

Algorithm (for connected graph):

- Initially, pick a vertex and place it in A
- While \exists undecided v with decided neighbor, color v

Correctness?

- N /l + -	chao		2010
	спае	Lai	HUIS

3

<ロト < 四ト < 三ト < 三ト

Definition

A matching in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.

3

Definition

A matching in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.

э

Definition

A matching in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.

Definition

A matching M is **perfect** if all vertices are incident to an edge of M.

Definition

A matching *M* is **maximum** if all sets of edges of size |M| + 1 or more contain two edges incident on the same vertex.

Note: These definitions are given for *general* graphs, but we mostly care about bipartite graphs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Augmenting Paths

Definition

Given G = (V, E) and a matching M, an **alternating path** is a path made up of edges e_1, e_2, \ldots, e_k such that for all $i \in [k - 1]$ we have $e_i \in M \Leftrightarrow e_{i+1} \notin M$.

Definition

An **augmenting** path is an alternating path where the first and last vertices are not incident to edges of M.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Augmenting Paths

Definition

Given G = (V, E) and a matching M, an **alternating path** is a path made up of edges e_1, e_2, \ldots, e_k such that for all $i \in [k - 1]$ we have $e_i \in M \Leftrightarrow e_{i+1} \notin M$.

Definition

An **augmenting** path is an alternating path where the first and last vertices are not incident to edges of M.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

10 / 21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

3

イロト 不得 トイヨト イヨト

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Augmenting Path $\leftarrow M$ is not maximum

- Let M' be a matching larger than M.
- $M \cup M'$ induces a graph of maximum degree 2
- ullet \Rightarrow union of paths and cycles
- \Rightarrow one of the paths must be augmenting to give |M'|>|M|

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

3

イロト 不得 トイヨト イヨト

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

< □ > < 凸
Perfect Matchings

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

- Establishes that BIPARTITE PERFECT MATCHING∈ NP∩coNP (why?)
- We will in fact show that it is in P....

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Image: A image: A

Image: A matrix

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Proof.

Perfect matching $\Rightarrow \forall S$ we have $|N(S)| \ge |S|$

• Easy: all elements of S have a distinct neighbor in the matching.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Proof.

Perfect matching $\Leftarrow \forall S$ we have $|N(S)| \ge |S|$

- Suppose that max matching *M* is not perfect.
- Take an unmatched vertex u
- Find all vertices reachable from *u* via alternating paths
- M maximum \Rightarrow cannot reach another unmatched vertex
- *u* plus reachable vertices give *S* with |N(S)| < |S|

< □ > < □ > < □ > < □ > < □ > < □ >

13/21

э

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Proof.

13 / 21

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \ge |S|$.

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

э

→ < ∃ →</p>

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

- G = (A, B, E) and start with an empty matching M
- e For each unmatched u ∈ A attempt to find an augmenting path starting at u.
 - If successful, augment *M*, goto 2.
 - If unsuccessful for all *u*, declare *M* maximum.

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

- G = (A, B, E) and start with an empty matching M
- Solution Provide a starting at *u*.
 Solution Provide A attempt to find an augmenting path starting at *u*.
 - If successful, augment *M*, goto 2.
 - If unsuccessful for all *u*, declare *M* maximum.

Correctness:

- If step 2 can be performed correctly, algorithm runs in polynomial-time.
- Correctness follows from Berge's theorem.

14/21

Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

イロト 不得 トイヨト イヨト

Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

Algorithm:

- $X \subseteq A, Y \subseteq B$ vertices reachable by alternating path from u. Initially, $X = \{u\}$ and $Y = \emptyset$.
- 2 Repeat n times, for all edges e
 - If e = ab, $e \notin M$, $a \in X$ and $b \notin Y$, set $Y := Y \cup \{b\}$.
 - $e = ab, e \in M, b \in Y \text{ and } a \notin X, \text{ set } X := X \cup \{a\}.$
- If Y contains an unmatched vertex (of B), say Yes, otherwise No.

15/21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

Algorithm:

- $X \subseteq A, Y \subseteq B$ vertices reachable by alternating path from u. Initially, $X = \{u\}$ and $Y = \emptyset$.
- 2 Repeat n times, for all edges e
 - $\ \, \textbf{If} \ e=ab, \ e\not\in M, \ a\in X \ \text{and} \ b\not\in Y, \ \text{set} \ Y:=Y\cup\{b\}.$
 - $e = ab, \ e \in M, \ b \in Y \ \text{and} \ a \notin X, \ \text{set} \ X := X \cup \{a\}.$

If Y contains an unmatched vertex (of B), say Yes, otherwise No.
 Correctness:

 G is bipartite, so X may contain only matched vertices. Paths u → X have even length, paths u → Y have odd length.

Michael Lampis

Graph Theory: Lecture 3

15/21

Hungarian Method: Example

16 / 21

Matchings and Vertex Covers

		220		20	-	
1 1 1	н	пае			D	15
					г.	

Vertex Covers

Definition

In a graph G = (V, E) a vertex cover is a set $S \subseteq V$ such that all edges of E have at least an endpoint in S.

Vertex Covers

Definition

In a graph G = (V, E) a **vertex cover** is a set $S \subseteq V$ such that all edges of E have at least an endpoint in S.

Problem

In the MINIMUM VERTEX COVER problem we take as input G, k and want to decide if G has a vertex cover of size $\leq k$.

Theorem

In all graphs G,
$$\alpha(G) + vc(G) = n$$
.

Minimum vertex cover of

• Paths P_n ? Cycles C_n ? Cliques K_n ? Complete bipartite graphs $K_{n,m}$?
Theorem

In all graphs G we have $vc(G) \ge mm(G)$.

Note: vc(G): min vertex cover, mm(G): max matching

Π.	Λ.	\mathbf{c}	h h	ام		2	m	n I	C.
1.0			па	CI	_	a			-

3

イロト 不得 トイヨト イヨト

Theorem

In all graphs G we have $vc(G) \ge mm(G)$.

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Theorem

In all graphs G we have $vc(G) \ge mm(G)$.

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

• NP?

Theorem

In all graphs G we have $vc(G) \ge mm(G)$.

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

• NP?

• Yes. Certificate is the cover S.

coNP?

Theorem

In all graphs G we have $vc(G) \ge mm(G)$.

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

• NP?

- Yes. Certificate is the cover S.
- coNP?
 - No!! (Unless NP=coNP !!)
 - Why doesn't maximum matching work as a certificate?

Theorem

If G is bipartite, then mm(G) = vc(G).

Proof.

- G = (A, B, E), M a max matching, U set of unmatched vertices of A.
- Define Z to be set of vertices reachable from U via alternating paths.
- Claim: (A \ Z) ∪ (B ∩ Z) is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then mm(G) = vc(G).

Proof.

- G = (A, B, E), M a max matching, U set of unmatched vertices of A.
- Define Z to be set of vertices reachable from U via alternating paths.
- Claim: (A \ Z) ∪ (B ∩ Z) is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then mm(G) = vc(G).

Proof.

- G = (A, B, E), M a max matching, U set of unmatched vertices of A.
- Define Z to be set of vertices reachable from U via alternating paths.
- Claim: (A \ Z) ∪ (B ∩ Z) is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then mm(G) = vc(G).

Proof.

- G = (A, B, E), M a max matching, U set of unmatched vertices of A.
- Define Z to be set of vertices reachable from U via alternating paths.
- Claim: (A \ Z) ∪ (B ∩ Z) is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then mm(G) = vc(G).

Proof.

- G = (A, B, E), M a max matching, U set of unmatched vertices of A.
- Define Z to be set of vertices reachable from U via alternating paths.
- Claim: (A \ Z) ∪ (B ∩ Z) is a vertex cover that contains one endpoint of each edge of M.

Kőnig's theorem – Implications

Theorem

If G is bipartite, then mm(G) = vc(G).

Corollary

MINIMUM VERTEX COVER is in coNP for bipartite graphs.

Image: A matrix

Kőnig's theorem – Implications

Theorem

If G is bipartite, then mm(G) = vc(G).

Corollary

MINIMUM VERTEX COVER is in coNP for bipartite graphs.

Corollary

MINIMUM VERTEX COVER is in P for bipartite graphs. (Using Hungarian Method).

• On general graphs, MINIMUM VERTEX COVER is NP-complete, so not in P, nor in coNP ... unless P=NP or NP=coNP...