Graph Theory: Lecture 3 Bipartite Graphs

Michael Lampis

September 17, 2024

D.

 298

K ロ ト K 伺 ト K ヨ ト K ヨ ト

[Bipartite Graphs and Matchings](#page-1-0)

 \mathbf{K} ٠

(ロ) (d)

重

 299

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two independent sets A, B.

目

 QQ

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two independent sets A, B.

э

 QQ

Þ

◂**◻▸ ◂◚▸**

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two independent sets A, B.

э

 QQ

Þ

◂**◻▸ ◂◚▸**

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two independent sets A, B.

Relation with:

- Paths?
- Cycles?
- o Trees?
- Cliques?

目

 QQ

イロト イ押 トイヨ トイヨ トー

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two independent sets A, B.

Definition

A graph $G = (V, E)$ is k-colorable if V can be partitioned into k independent sets.

- GRAPH COLORING is a notorious graph problem.
- Deciding if a graph is bipartite is the special case for $k = 2$.

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

Why care about bipartite graphs?

← ロ → → ← 何 →

 -4

重

 299

 \Rightarrow

◆ ロ ▶ → 何

÷,

 299

(□) (_□

 \rightarrow \rightarrow \rightarrow

э

Why care about bipartite graphs?

- Come up naturally when we have two groups of elements and only care about relations from one group to the other.
- What structure arises from this restriction?
- Can we use it algorithmically?

◂**◻▸ ◂◚▸**

 QQ

[Basic Facts](#page-11-0)

 2990

イロト イ団 トイ ヨト イヨト 一番

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

÷ \sim

◂**◻▸ ◂◚▸**

 \Rightarrow \rightarrow э QQQ

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.

Bipartite \Rightarrow No odd cycle:

• Easy: C_{2k+1} is **not** bipartite, bipartiteness is preserved by subgraphs, so if $C_{2k+1} \subseteq G$, then G is not bipartite.

つへへ

Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.

Bipartite \Leftarrow No odd cycle:

• Let x be a vertex of G, V_1 vertices at odd distance from x, $V_2 = V \setminus V$, distances at even distance from x.

• Claim: V_1 , V_2 are independent sets.

- Take $y, z \in V_1$, shortest $x \to y, x \to z$ paths.
- Let x' be the last common vertex of these paths.
- $x' \rightarrow y, x' \rightarrow z$ paths have the same parity.
- If $yz \in E$ we have an odd cycle, contradiction!

イロト イ押ト イヨト イヨト

Problem

Given G, decide if G is bipartite.

重

 299

イロメ イ部メ イヨメ イヨメー

Problem

Given G, decide if G is bipartite.

 \bullet Is in NP

重

 299

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Problem

Given G, decide if G is bipartite.

- \bullet Is in NP
	- Certificate is the bipartition.
- \bullet Is in coNP

◂**◻▸ ◂◚▸**

目

 QQ

Problem

Given G, decide if G is bipartite.

- \bullet Is in NP
	- Certificate is the bipartition.
- \bullet Is in coNP
	- Counter-certificate is an odd cycle.

 \sim

∢ □ ▶ ⊣ *←* □

э

 QQQ

Problem

Given G, decide if G is bipartite.

- \bullet Is in NP
	- Certificate is the bipartition.
- \bullet Is in coNP
	- Counter-certificate is an odd cycle.
- ⇒ is in NP∩coNP
- **o** In fact is in P

Proof.

Algorithm (for connected graph):

- \bullet Initially, pick a vertex and place it in A
- While ∃ undecided v with decided neighbor, color v

Correctness?

重

 299

イロト イ部 トイヨ トイヨト

Definition

A **matching** in a graph $G = (V, E)$ is a set $M \subseteq E$ such that no two elements of M share a vertex.

G.

 QQ

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Definition

A **matching** in a graph $G = (V, E)$ is a set $M \subseteq E$ such that no two elements of M share a vertex.

4 0 F

 \rightarrow \equiv \rightarrow

э

Definition

A **matching** in a graph $G = (V, E)$ is a set $M \subseteq E$ such that no two elements of M share a vertex.

Definition

A matching M is **perfect** if all vertices are incident to an edge of M.

Definition

A matching M is **maximum** if all sets of edges of size $|M| + 1$ or more contain two edges incident on the same vertex.

Note: These definitions are given for *general* graphs, but we mostly care about bipartite graphs.

イロト イ押 トイヨ トイヨ トーヨ

Augmenting Paths

Definition

Given $G = (V, E)$ and a matching M, an **alternating path** is a path made up of edges e_1, e_2, \ldots, e_k such that for all $i \in [k-1]$ we have $e_i \in M \Leftrightarrow e_{i+1} \notin M$.

Definition

An **augmenting** path is an alternating path where the first and last vertices are not incident to edges of M.

 Ω

イロト イ何 トイヨト イヨト ニヨー

Augmenting Paths

Definition

Given $G = (V, E)$ and a matching M, an **alternating path** is a path made up of edges e_1, e_2, \ldots, e_k such that for all $i \in [k-1]$ we have $e_i \in M \Leftrightarrow e_{i+1} \notin M$.

Definition

An **augmenting** path is an alternating path where the first and last vertices are not incident to edges of M.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

G.

 Ω

イロト イ押ト イヨト イヨトー

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.

Augmenting Path \Leftarrow *M* is not maximum

- Let M' be a matching larger than M.
- $M \cup M'$ induces a graph of maximum degree 2
- $\bullet \Rightarrow$ union of paths and cycles
- \Rightarrow one of the paths must be augmenting to give $|M'|>|M|$

◂**◻▸ ◂◚▸**

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

目

 QQ

Þ

∢ □ ▶ ⊣ 倒 ▶

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

 299

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

 Ω
Perfect Matchings

Problem

Given a bipartite graph $G = (A, B, E)$, decide if G has a perfect matching.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| > |S|$.

- Establishes that Bipartite Perfect Matching∈ NP∩coNP (why?)
- We will in fact show that it is in P. . .

 Ω

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

э.

◂**◻▸ ◂◚▸**

目

 QQQ

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Proof.

Perfect matching $\Rightarrow \forall S$ we have $|N(S)| > |S|$

Easy: all elements of S have a distinct neighbor in the matching.

 Ω

◂**◻▸ ◂◚▸**

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subset A$ we have $|N(S)| > |S|$.

Proof.

Perfect matching $\Leftarrow \forall S$ we have $|N(S)| > |S|$

- Suppose that max matching M is not perfect.
- Take an unmatched vertex u
- \bullet Find all vertices reachable from u via alternating paths
- M maximum \Rightarrow cannot reach another unmatched vertex
- \bullet u plus reachable vertices give S with $|N(S)| < |S|$

G.

 QQQ

イロト イ押ト イヨト イヨト

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

Theorem (Hall 1935)

A bipartite graph $G = (A, B, E)$ contains a perfect matching if and only if for all $S \subseteq A$ we have $|N(S)| \geq |S|$.

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

э

 QQ

← ロ → → ← 何 →

 -4

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

- \bigcirc $G = (A, B, E)$ and start with an empty matching M
- **2** For each unmatched $u \in A$ attempt to find an augmenting path starting at u.
	- \bullet If successful, augment M, goto 2.
	- \bullet If unsuccessful for all u , declare M maximum.

∢ □ ▶ ◀ [□] ▶ ◀

 QQQ

The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum matching of a bipartite graph.

- \bigcirc $G = (A, B, E)$ and start with an empty matching M
- **2** For each unmatched $u \in A$ attempt to find an augmenting path starting at u.
	- If successful, augment M , goto 2.
	- \bullet If unsuccessful for all u , declare M maximum.

Correctness:

- If step 2 can be performed correctly, algorithm runs in polynomial-time.
- **Correctness follows from Berge's theorem.**

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

Finding Augmenting Paths

Lemma

Given $G = (A, B, E)$, matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

 QQ

イロト イ押 トイヨ トイヨ トー

Finding Augmenting Paths

Lemma

Given $G = (A, B, E)$, matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

Algorithm:

- \bullet $X \subset A$, $Y \subset B$ vertices reachable by alternating path from u. Initially, $X = \{u\}$ and $Y = \emptyset$.
- 2 Repeat *n* times, for all edges e
	- **0** If $e = ab$, $e \notin M$, $a \in X$ and $b \notin Y$, set $Y := Y \cup \{b\}$.
	- **2** If $e = ab$, $e \in M$, $b \in Y$ and $a \notin X$, set $X := X \cup \{a\}$.
- \bullet If Y contains an unmatched vertex (of B), say Yes, otherwise No.

Finding Augmenting Paths

Lemma

Given $G = (A, B, E)$, matching M, unmatched $u \in A$, we can in polynomial time decide if there is an augmenting path starting at u.

Algorithm:

 \bullet $X \subset A$, $Y \subset B$ vertices reachable by alternating path from u. Initially, $X = \{u\}$ and $Y = \emptyset$.

2 Repeat *n* times, for all edges e

0 If $e = ab$, $e \notin M$, $a \in X$ and $b \notin Y$, set $Y := Y \cup \{b\}$. **2** If $e = ab$, $e \in M$, $b \in Y$ and $a \notin X$, set $X := X \cup \{a\}$.

 \bullet If Y contains an unmatched vertex (of B), say Yes, otherwise No. Correctness:

• G is bipartite, so X may contain only matched vertices. Paths $u \to X$ have even l[eng](#page-50-0)[th](#page-52-0), paths $u \rightarrow Y$ have odd length[.](#page-48-0) QQQ

[Matchings and Vertex Covers](#page-69-0)

重

 298

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Vertex Covers

Definition

In a graph $G = (V, E)$ a vertex cover is a set $S \subseteq V$ such that all edges of E have at least an endpoint in S.

э.

◂**◻▸ ◂◚▸**

G.

 Ω

Vertex Covers

Definition

In a graph $G = (V, E)$ a vertex cover is a set $S \subseteq V$ such that all edges of E have at least an endpoint in S .

Problem

In the MINIMUM VERTEX COVER problem we take as input G, k and want to decide if G has a vertex cover of size $\leq k$.

Theorem

In all graphs G, $\alpha(G) + \text{vc}(G) = n$.

Minimum vertex cover of

• Paths P_n ? Cycles C_n ? Cliques K_n ? Complete bipartite graphs $K_{n,m}$?
Theorem

In all graphs G we have $\text{vc}(G) \ge \text{mm}(G)$.

Note: $vc(G)$: min vertex cover, $mm(G)$: max matching

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Theorem

In all graphs G we have $\text{vc}(G) \ge \text{mm}(G)$.

Note: $vc(G)$: min vertex cover, $mm(G)$: max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Theorem

In all graphs G we have $\text{vc}(G) \ge \text{mm}(G)$.

Note: $vc(G)$: min vertex cover, $mm(G)$: max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

 \bullet NP?

Theorem

In all graphs G we have $\text{vc}(G) \ge \text{mm}(G)$.

Note: $vc(G)$: min vertex cover, $mm(G)$: max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

 \bullet NP?

• Yes. Certificate is the cover S.

 \bullet coNP?

Theorem

In all graphs G we have $\text{vc}(G)$ $> \text{mm}(G)$.

Note: $vc(G)$: min vertex cover, $mm(G)$: max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers two such edges.

Is VERTEX COVER in...

 \bullet NP?

Yes. Certificate is the cover S.

 \bullet coNP?

- No!! (Unless NP=coNP !!)
- Why doesn't maximum matching work as [a c](#page-75-0)[ert](#page-77-0)[ifi](#page-71-0)[c](#page-72-0)[a](#page-76-0)[t](#page-77-0)[e](#page-68-0)[?](#page-69-0)

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

Proof

- $G = (A, B, E)$, M a max matching, U set of unmatched vertices of A.
- \bullet Define Z to be set of vertices reachable from U via alternating paths.
- Claim: $(A \setminus Z) \cup (B \cap Z)$ is a vertex cover that contains one endpoint of each edge of M.

 Ω

イロト イ押 トイヨ トイヨ トー

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

- $G = (A, B, E)$, M a max matching, U set of unmatched vertices of A.
- \bullet Define Z to be set of vertices reachable from U via alternating paths.
- Claim: $(A \setminus Z) \cup (B \cap Z)$ is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

- $G = (A, B, E)$, M a max matching, U set of unmatched vertices of A.
- \bullet Define Z to be set of vertices reachable from U via alternating paths.
- Claim: $(A \setminus Z) \cup (B \cap Z)$ is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

- $G = (A, B, E)$, M a max matching, U set of unmatched vertices of A.
- \bullet Define Z to be set of vertices reachable from U via alternating paths.
- Claim: $(A \setminus Z) \cup (B \cap Z)$ is a vertex cover that contains one endpoint of each edge of M.

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

- $G = (A, B, E)$, M a max matching, U set of unmatched vertices of A.
- \bullet Define Z to be set of vertices reachable from U via alternating paths.
- Claim: $(A \setminus Z) \cup (B \cap Z)$ is a vertex cover that contains one endpoint of each edge of M.

 K őnig's theorem – Implications

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

Corollary

MINIMUM VERTEX COVER is in coNP for bipartite graphs.

э

 QQ

イロト イ押 トイヨ トイヨ トー

$K\ddot{\text{o}}$ nig's theorem – Implications

Theorem

If G is bipartite, then $mm(G) = \text{vc}(G)$.

Corollary

MINIMUM VERTEX COVER is in coNP for bipartite graphs.

Corollary

MINIMUM VERTEX COVER is in P for bipartite graphs. (Using Hungarian Method).

• On general graphs, MINIMUM VERTEX COVER is NP-complete, so not in P, nor in $coNP$... unless P=NP or $NP=coNP...$

 Ω

イロト イ押 トイヨ トイヨ トー