Graph Theory: Lecture 2

Trees and Forests

Michael Lampis

September 27, 2024

 2990

K ロ > K dj > K 글 > K 글 > H 글

[Trees](#page-1-0)

 QQQ

K ロ メ イ 部 メ ペ 差 メ ペ 差 メ ニ 差

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a forest. If G is a connected forest, then we say that G is a tree.

э

 QQ

イロト イ押 トイヨ トイヨ トー

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a **forest**. If G is a connected forest, then we say that G is a tree.

÷

◂**◻▸ ◂◚▸**

 \rightarrow \equiv \rightarrow

 QQ

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a **forest**. If G is a connected forest, then we say that G is a tree.

Questions:

- Is P_n as tree? Is \overline{P}_n a tree?
- Is the complement of a tree a tree?
- Is every (induced) subgraph of a tree a tree?
- Is every (induced) subgraph of a forest a forest?

 QQQ

Characterizations of Trees

Theorem

The following are equivalent for any graph $G = (V, E)$:

- **1** G is a tree.
- 2 Any two vertices of G are connected by a unique path.
- **3** G is minimally connected.
- **4** G is maximally acyclic.
- **5** G is connected and $|E(G)| = |V(G)| 1$.
- **6** G is acyclic and $|E(G)| = |V(G)| 1$.

◂**◻▸ ◂◚▸**

 Ω

Lemma

If G is a tree then any two vertices are connected by a unique path.

[Trees](#page-1-0)

 \equiv

 2990

イロメ イ部メ イヨメ イヨメー

1⇒2

Lemma

If G is a tree then any two vertices are connected by a unique path.

Proof.

- G is a tree \Rightarrow G is connected \Rightarrow any two vertices are connected by at least one path.
- \bullet If u, v were connected by two distinct paths, we would have a cycle, contradiction.

1⇒2

Lemma

If G is a tree then any two vertices are connected by a unique path.

Proof.

- G is a tree \Rightarrow G is connected \Rightarrow any two vertices are connected by at least one path.
- \bullet If u, v were connected by two distinct paths, we would have a cycle, contradiction.
	- Let u, v be the two vertices connected by two distinct paths such that $dist(u, v)$ is minimum.
	- Let $P_1 = (u, x_1, x_2, \ldots, x_k, v)$, $P_2 = (u, y_1, y_2, \ldots, y_\ell, v)$ be two such paths and P_1 be a shortest $u - v$ path.
	- If $x_i = y_j$ for some i, j , then x_i, v is another pair, with shorter distance, contradiction!
	- If not, $(u, x_1, \ldots, v, y_\ell, \ldots, u)$ is a cycle.

Lemma

If any two vertices of G are connected by a unique path, then G is a tree.

[Trees](#page-1-0)

目

 298

メロトメ 倒 トメ ヨ トメ ヨ トー

$2\rightarrow 1$

Lemma

If any two vertices of G are connected by a unique path, then G is a tree.

Proof.

- G is connected, so must prove it is acyclic.
- \bullet For the sake of contradiction, suppose G has a cycle subgraph $(x_1, x_2, \ldots, x_k, x_1).$
- Then, there exist two distinct paths $x_1 x_k$: (x_1, x_k) and (x_1, x_2, \ldots, x_k) , contradiction!

 Ω

(□) (_□) (

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

目

 298

イロト イ母 トイヨ トイヨ トー

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

Minimally connected: connected but removing any edge disconnects the graph.

Þ

◂**◻▸ ◂◚▸**

 299

目

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

Proof.

- \bullet 2 \Rightarrow 3
	- \bullet G is connected by assumption.
	- For $e = xy$, $G e$ cannot be connected, because we would have two $x - y$ paths in G.
- \bullet 3 \Rightarrow 2
	- Any two vertices are connected by at least one path.
	- If x, y have two paths, we have a cycle, any edge e of this cycle can be removed without disconnecting the graph.

 \leftarrow \leftarrow \leftarrow

$1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

 \equiv

 2990

イロメ イ部メ イヨメ イヨメー

$1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

Maximally acyclic: acyclic but adding any edge creates a cycle.

E

 2980

イロト イ母 トイヨ トイヨ トー

$1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

Proof.

- \bullet 1 \Rightarrow 4
	- \bullet G is a tree, so acyclic.
	- Adding the edge uv adds a cycle, as G is connected, so there is already a $u - v$ path.
- \bullet 4 \Rightarrow 1
	- \bullet G is acyclic, so need to prove it is connected.
	- Suppose not, and there is no path $u \to v$.
	- Then, the edge uv does not create a cycle, contradicting maximality.

 200

Lemma

If $G = (V, E)$ is minimally connected, then $|E| = |V| - 1$.

[Trees](#page-1-0)

$(1, 3) \Rightarrow 5$

Lemma

If $G = (V, E)$ is minimally connected, then $|E| = |V| - 1$.

Proof.

By induction:

- \bullet $n \leq 2$: trivial.
- Larger n: let $ab \in E$, consider the two (?) connected components G_1 , G_2 for $G - ab$.
- By induction $|E(G_1)| = |V(G_1)| 1$ and $|E(G_2)| = |V(G_2)| 1$.
- $|E(G)| = |E(G_1)| + |E(G_2)| + 1 = |V(G)| 1.$

イロン イ部ン イヨン イヨン 一番

 $5 \Rightarrow 1$

Lemma

If for $G = (V, E)$, G is connected and $|E| \leq |V| - 1$, then G is a tree.

[Trees](#page-1-0)

$5 \Rightarrow 1$

Lemma

If for $G = (V, E)$, G is connected and $|E| \leq |V| - 1$, then G is a tree.

Proof.

By minimal counter-example:

- Among all counter-examples, take G to have minimum $|E|$.
- \bullet Since G is a counter-example, it must have a cycle, let e be an edge of the cycle.
- $G' = G e$ is connected and has fewer edges, so it is not a counter-example.
- $\Rightarrow G'$ is a tree, and by previous slide $|E(G')|=|V(G')|-1.$
- We have $|E(G)| = |E(G')| + 1 = |V(G')| = |V(G)|$, contradiction!

$(1, 5) \Rightarrow 6$

Lemma

If $G = (V, E)$ is a tree and $|E| = |V| - 1$, then G is acyclic and $|E| = |V| - 1.$

[Trees](#page-1-0)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

 $(1, 5) \Rightarrow 6$

Lemma

If $G = (V, E)$ is a tree and $|E| = |V| - 1$, then G is acyclic and $|E| = |V| - 1.$

[Trees](#page-1-0)

Proof.

Obvious!

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

 $6 \Rightarrow 1$

Lemma

If $G = (V, E)$ is acyclic and $|E| = |V| - 1$, then G is a tree.

[Trees](#page-1-0)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

$6 \Rightarrow 1$

Lemma

If $G = (V, E)$ is acyclic and $|E| = |V| - 1$, then G is a tree.

Proof

Need to show that G is connected.

- Let G_1, \ldots, G_k be the connected components.
- Each G_i is a tree, so $|E(G_i)| = |V(G_i)| 1$.

$$
\bullet \ |E| = \sum_{i \in [k]} |E(G_i)| = \sum_{i \in [k]} (|V(G_i)| - 1) = |V| - k
$$

• Therefore, $k = 1$.

$6 \Rightarrow 1$

Lemma

If $G = (V, E)$ is acyclic and $|E| = |V| - 1$, then G is a tree.

Proof

Need to show that G is connected.

- Let G_1, \ldots, G_k be the connected components.
- Each G_i is a tree, so $|E(G_i)| = |V(G_i)| 1$.

$$
\bullet \ |E| = \sum_{i \in [k]} |E(G_i)| = \sum_{i \in [k]} (|V(G_i)| - 1) = |V| - k
$$

• Therefore, $k = 1$.

Phew!

イロト イ母 トイミト イヨト ニヨー りんぴ

Characterizations of Trees (Recap)

Theorem

The following are equivalent for any graph $G = (V, E)$:

- **1** G is a tree.
- 2 Any two vertices of G are connected by a unique path.
- **3** G is minimally connected.
- **4** G is maximally acyclic.
- **6** G is connected and $|E(G)| = |V(G)| 1$.
- **6** G is acyclic and $|E(G)| = |V(G)| 1$.

◂**◻▸ ◂◚▸**

 Ω

Trees have leaves!

Definition

A vertex of degree 1 is called a leaf.

Theorem

If $G = (V, E)$ is a tree with $|V| \geq 2$, then G contains at least two distinct leaves.

э.

◂**◻▸ ◂◚▸**

G. Ω

Trees have leaves!

Definition

A vertex of degree 1 is called a leaf.

Theorem

If $G = (V, E)$ is a tree with $|V| \geq 2$, then G contains at least two distinct leaves.

Proof.

- $|E| = |V| 1$
- $2|E| = \sum_{\nu \in V} \mathsf{deg}(\nu)$
- If for some $v \in V$, $deg(v) = 0$, G is disconnected, contradiction.
- If for at most one $v \in V$, deg(v) = 1, then $2|E| \geq 2|V| - 1 \Rightarrow |E| \geq |V|$, contradiction!
- So, for at least two vertices $v \in V$, deg(v) = 1.

Algorithmic Part: Recognition

Problem

Given graph $G = (V, E)$, decide if G is a tree/forest.

• Naïve algorithm:

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Algorithmic Part: Recognition

Problem

Given graph $G = (V, E)$, decide if G is a tree/forest.

- Naïve algorithm:
	- For each edge $e \in E$ verify that $G e$ is diconnected.
	- \bullet (Tree) Verify that G is connected.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Algorithmic Part: Recognition

Problem

Given graph $G = (V, E)$, decide if G is a tree/forest.

- Naïve algorithm:
	- For each edge $e \in E$ verify that $G e$ is diconnected.
	- \bullet (Tree) Verify that G is connected.
- Alternative: check if graph is 1-degenerate

 QQ

イロト イ押 トイヨ トイヨ トーヨ

Algorithmic Part: Recognition

Problem

Given graph $G = (V, E)$, decide if G is a tree/forest.

- Naïve algorithm:
	- For each edge $e \in E$ verify that $G e$ is diconnected.
	- (Tree) Verify that G is connected.
- Alternative: check if graph is 1-degenerate

Definition

G is k-degenerate iff every (induced) subgraph of G has a vertex of degree at most k.

イロト イ押 トイヨ トイヨ トーヨ

 Ω

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.

ALC

 299

э

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k -degenerate.

Proof.

Algorithm:

- If G is empty \rightarrow Yes.
- If G has no vertex of degree $\leq k \to$ No.
- If v has degree $\leq k$ it suffices to check $G v$ is k-degenerate, recurse.
	- \bullet ... because all subgraphs that contain ν are OK.

Theorem

G is a forest if and only if G is 1-degenerate.

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.

Proof.

- Forest \Rightarrow 1-degenerate
	- Forests contain leaves, are closed under subgraphs
- 1-degenerate \Rightarrow forest
	- If not forest \rightarrow contains cycle \rightarrow not 1-degenerate, contradiction!

 200

イロト イ押ト イヨト イヨト

Separations

- Trees are algorithmically important.
- One key property (among many): **balanced separators**

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Separations

- **•** Trees are **algorithmically** important.
- One key property (among many): **balanced separators**

Definition

For graph G a vertex v is called a $\frac{1}{2}$ -separator if all connected components of $G - v$ contain at most $\frac{|V|}{2}$ vertices.

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

• Algorithmic application: Divide&Conquer

 Ω

イロト イ押 トイヨ トイヨ トー ヨ

Trees have Balanced Separators

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

(NB): Every non-leaf vertex is a separator, but not necessarily balanced.

◂**◻▸ ◂◚▸**

 Ω

Trees have Balanced Separators

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

Proof.

- $\bullet i = 1$
- Take a vertex v_i of degree ≥ 2
	- If v_1 is a $\frac{1}{2}$ -separator, done!
	- Otherwise, $G v_1$ has exactly one large component.
	- Let v_{i+1} be the neighbor of v_i in that component, repeat.
- $\bullet \Rightarrow$ forms a path v_1, v_2, \ldots, v_k .
- Vertices cannot be repeated and graph contains no cycle, so we must end with a $\frac{1}{2}$ -separator.

目

 200

イロト イ部 トイヨ トイヨト