Graph Theory: Lecture 2

Trees and Forests

Michael Lampis

September 27, 2024

Michael Lampis

Graph Theory: Lecture 2

September 27, 2024

3

1/18

イロト 不得 トイヨト イヨト

Michael Lampis

Graph Theory: Lecture 2

September 27, 2024

◆□→ ◆圖→ ◆注→ ◆注→ □注

2/18

Tre

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a **forest**. If G is a connected forest, then we say that G is a **tree**.

э

イロト 不得下 イヨト イヨト

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a **forest**. If G is a connected forest, then we say that G is a **tree**.

< □ > < 凸

э

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a **forest**. If G is a connected forest, then we say that G is a **tree**.

Questions:

- Is P_n as tree? Is \overline{P}_n a tree?
- Is the complement of a tree a tree?
- Is every (induced) subgraph of a tree a tree?
- Is every (induced) subgraph of a forest a forest?

Characterizations of Trees

Theorem

The following are equivalent for any graph G = (V, E):

- G is a tree.
- 2 Any two vertices of G are connected by a unique path.
- **3** *G* is minimally connected.
- G is maximally acyclic.
- **5** G is connected and |E(G)| = |V(G)| 1.
- G is acyclic and |E(G)| = |V(G)| 1.

4/18

Lemma

If G is a tree then any two vertices are connected by a unique path.

Trees

N A	10	220	1 2 22	2010
1.01	к.	пае		IDIS

3

イロン イヨン イヨン

1⇒2

Lemma

If G is a tree then any two vertices are connected by a unique path.

Proof.

- G is a tree ⇒ G is connected ⇒ any two vertices are connected by at least one path.
- If *u*, *v* were connected by two distinct paths, we would have a cycle, contradiction.

1⇒2

Lemma

If G is a tree then any two vertices are connected by a unique path.

Proof.

- G is a tree ⇒ G is connected ⇒ any two vertices are connected by at least one path.
- If *u*, *v* were connected by two distinct paths, we would have a cycle, contradiction.
 - Let u, v be the two vertices connected by two distinct paths such that dist(u, v) is minimum.
 - Let $P_1 = (u, x_1, x_2, \dots, x_k, v)$, $P_2 = (u, y_1, y_2, \dots, y_\ell, v)$ be two such paths and P_1 be a shortest u v path.
 - If $x_i = y_j$ for some i, j, then x_i, v is another pair, with shorter distance, contradiction!
 - If not, $(u, x_1, \ldots, v, y_\ell, \ldots, u)$ is a cycle.

Lemma

If any two vertices of G are connected by a unique path, then G is a tree.

Trees

NALC	b b b		00.00	
IVIIC.	пае	Ld		15

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

2⇒1

Lemma

If any two vertices of G are connected by a unique path, then G is a tree.

Proof.

- *G* is connected, so must prove it is acyclic.
- For the sake of contradiction, suppose G has a cycle subgraph $(x_1, x_2, \ldots, x_k, x_1)$.
- Then, there exist two distinct paths $x_1 x_k$: (x_1, x_k) and (x_1, x_2, \ldots, x_k) , contradiction!

Lemma

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

Trees

3

イロト 不得 トイヨト イヨト

Lemma

2⇔3

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

Trees

Minimally connected: connected but removing any edge disconnects the graph.

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is minimally connected.

Proof.

- $2 \Rightarrow 3$
 - *G* is connected by assumption.
 - For e = xy, G e cannot be connected, because we would have two x y paths in G.
- $3 \Rightarrow 2$
 - Any two vertices are connected by at least one path.
 - If x, y have two paths, we have a cycle, any edge e of this cycle can be removed without disconnecting the graph.

- (日)

$1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

NAIC	b b c	100.00	10
IVIIC.	пае		15

3

イロン イヨン イヨン

 $1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

Maximally acyclic: acyclic but adding any edge creates a cycle.

Trees

NALC	b b b		00.00	
IVIIC.	пае	Ld		15

3

$1 \Leftrightarrow 4$

Lemma

G is a tree if and only if G is maximally acyclic.

Proof.

- $1 \Rightarrow 4$
 - G is a tree, so acyclic.
 - Adding the edge uv adds a cycle, as G is connected, so there is already a u v path.
- $4 \Rightarrow 1$
 - *G* is acyclic, so need to prove it is connected.
 - Suppose not, and there is no path $u \rightarrow v$.
 - Then, the edge uv does not create a cycle, contradicting maximality.

Lemma

If G = (V, E) is minimally connected, then |E| = |V| - 1.

Trees

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

$(1,3) \Rightarrow 5$

Lemma

If G = (V, E) is minimally connected, then |E| = |V| - 1.

Proof.

By induction:

- $n \leq 2$: trivial.
- Larger *n*: let $ab \in E$, consider the **two** (?) connected components G_1, G_2 for G ab.
- By induction $|E(G_1)| = |V(G_1)| 1$ and $|E(G_2)| = |V(G_2)| 1$.
- $|E(G)| = |E(G_1)| + |E(G_2)| + 1 = |V(G)| 1.$

イロト イポト イヨト イヨト 二日

 $5 \Rightarrow 1$

Lemma

If for G = (V, E), G is connected and $|E| \le |V| - 1$, then G is a tree.

Trees

Which sell smoot	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$5 \Rightarrow 1$

Lemma

If for G = (V, E), G is connected and $|E| \le |V| - 1$, then G is a tree.

Proof.

By minimal counter-example:

- Among all counter-examples, take G to have minimum |E|.
- Since G is a counter-example, it must have a cycle, let e be an edge of the cycle.
- G' = G e is connected and has fewer edges, so it is **not** a counter-example.
- \Rightarrow G' is a tree, and by previous slide |E(G')| = |V(G')| 1.
- We have |E(G)| = |E(G')| + 1 = |V(G')| = |V(G)|, contradiction!

$(1,5) \Rightarrow 6$

Lemma

If G = (V, E) is a tree and |E| = |V| - 1, then G is acyclic and |E| = |V| - 1.

Trees

 $(1,5) \Rightarrow 6$

Lemma

If G = (V, E) is a tree and |E| = |V| - 1, then G is acyclic and |E| = |V| - 1.

Trees

Proof. Obvious!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 $6 \Rightarrow 1$

Lemma

If G = (V, E) is acyclic and |E| = |V| - 1, then G is a tree.

Trees

NALC	b b b		00.00	
IVIIC.	пае	Ld		15

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

$6 \Rightarrow 1$

Lemma

If G = (V, E) is acyclic and |E| = |V| - 1, then G is a tree.

Proof.

Need to show that G is connected.

- Let G_1, \ldots, G_k be the connected components.
- Each G_i is a tree, so $|E(G_i)| = |V(G_i)| 1$.

•
$$|E| = \sum_{i \in [k]} |E(G_i)| = \sum_{i \in [k]} (|V(G_i)| - 1) = |V| - k$$

• Therefore,
$$k = 1$$
.

$6 \Rightarrow 1$

Lemma

If G = (V, E) is acyclic and |E| = |V| - 1, then G is a tree.

Proof.

Need to show that G is connected.

- Let G_1, \ldots, G_k be the connected components.
- Each G_i is a tree, so $|E(G_i)| = |V(G_i)| 1$.

•
$$|E| = \sum_{i \in [k]} |E(G_i)| = \sum_{i \in [k]} (|V(G_i)| - 1) = |V| - k$$

• Therefore,
$$k = 1$$
.

Phew!

Characterizations of Trees (Recap)

Theorem

The following are equivalent for any graph G = (V, E):

- G is a tree.
- 2 Any two vertices of G are connected by a unique path.
- **3** *G* is minimally connected.
- G is maximally acyclic.
- **5** G is connected and |E(G)| = |V(G)| 1.
- G is acyclic and |E(G)| = |V(G)| 1.

Trees have leaves!

Definition

A vertex of degree 1 is called a **leaf**.

Theorem

If G = (V, E) is a tree with $|V| \ge 2$, then G contains at least two distinct leaves.

Trees have leaves!

Definition

A vertex of degree 1 is called a leaf.

Theorem

If G = (V, E) is a tree with $|V| \ge 2$, then G contains at least two distinct leaves.

Proof.

- |E| = |V| 1
- $2|E| = \sum_{v \in V} \deg(v)$
- If for some $v \in V$, deg(v) = 0, G is disconnected, contradiction.
- If for at most one $v \in V$, deg(v) = 1, then $2|E| \ge 2|V| 1 \Rightarrow |E| \ge |V|$, contradiction!
- So, for at least two vertices $v \in V$, deg(v) = 1.

Problem

Given graph G = (V, E), decide if G is a tree/forest.

• Naïve algorithm:

3

イロン イヨン イヨン

Problem

Given graph G = (V, E), decide if G is a tree/forest.

- Naïve algorithm:
 - For each edge $e \in E$ verify that G e is disconnected.
 - (Tree) Verify that G is connected.

イロト 不得 トイラト イラト 一日

Problem

Given graph G = (V, E), decide if G is a tree/forest.

- Naïve algorithm:
 - For each edge $e \in E$ verify that G e is disconnected.
 - (Tree) Verify that G is connected.
- Alternative: check if graph is 1-degenerate

Problem

Given graph G = (V, E), decide if G is a tree/forest.

- Naïve algorithm:
 - For each edge $e \in E$ verify that G e is disconnected.
 - (Tree) Verify that G is connected.
- Alternative: check if graph is 1-degenerate

Definition

G is k-degenerate iff every (induced) subgraph of G has a vertex of degree at most k.

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.

ΝЛ	ich	201	1 2 22	DIC
1 1 1		aci	Laill	015

Image: A matrix

э

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Proof.

Algorithm:

- If G is empty \rightarrow Yes.
- If G has no vertex of degree $\leq k \rightarrow No$.
- If v has degree ≤ k it suffices to check G − v is k-degenerate, recurse.
 - ... because all subgraphs that contain v are OK.

Theorem

G is a forest if and only if G is 1-degenerate.

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.

Proof.

- Forest \Rightarrow 1-degenerate
 - Forests contain leaves, are closed under subgraphs
- 1-degenerate \Rightarrow forest
 - If not forest \rightarrow contains cycle \rightarrow not 1-degenerate, contradiction!

< □ > < □ > < □ > < □ >

Separations

- Trees are **algorithmically** important.
- One key property (among many): balanced separators

3

Separations

- Trees are algorithmically important.
- One key property (among many): balanced separators

Definition

For graph G a vertex v is called a $\frac{1}{2}$ -separator if all connected components of G - v contain at most $\frac{|V|}{2}$ vertices.

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

• Algorithmic application: Divide&Conquer

- N / L L	cha	പിറ	mnic
TALL	Cillar	сі ца	mpis

Trees have Balanced Separators

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

(**NB**): Every non-leaf vertex is a separator, but not necessarily balanced.

Trees have Balanced Separators

Theorem

If G is a tree, then G has a $\frac{1}{2}$ -separator.

Proof.

- *i* = 1
- Take a vertex v_i of degree ≥ 2
 - If v_1 is a $\frac{1}{2}$ -separator, done!
 - Otherwise, $G v_1$ has **exactly one** large component.
 - Let v_{i+1} be the neighbor of v_i in that component, repeat.
- \Rightarrow forms a path v_1, v_2, \ldots, v_k .
- Vertices cannot be repeated and graph contains no cycle, so we must end with a ¹/₂-separator.

イロト イポト イヨト イヨト