Graph Theory: Lecture 1 **Introduction**

Michael Lampis

September 9, 2024

 $A \Box B$ A

重

 2990

重

 2990

イロト イ部 トイモ トイモト

- This is a **Math** course...
	- Graph Theory is a branch of discrete Math
	- Will focus heavily on proofs

目

イロト イ押ト イヨト イヨト

 QQ

- \bullet This is a Math course. .
	- Graph Theory is a branch of discrete Math
	- Will focus heavily on proofs
- . . . taught from a (theoretical) computer science perspective
	- Will frequently discuss algorithms/complexity implications
	- Will **NOT** program anything!

 QQQ

- This is a **Math** course...
	- Graph Theory is a branch of discrete Math
	- Will focus heavily on **proofs**
- . . . taught from a (theoretical) computer science perspective
	- Will frequently discuss algorithms/complexity implications
	- Will **NOT** program anything!
- Will sometimes discuss potential applications, but not much
	- How graphs model real-world problems is an interesting topic for another course.
	- We will mostly assume graphs are given and study them as math objects.

 QQQ

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page:

<https://www.lamsade.dauphine.fr/~mlampis/Graphs/>

- **•** Grade Calculation:
	- Midterm Exam: 30% of grade (likely date: $25/10$)
	- Final Exam: 70% of grade
- Material to Study:
	- Slides (posted on web page)
	- TD exercises and solutions (posted on web page)
	- **•** Further reading material linked on web page

 QQQ

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page:

<https://www.lamsade.dauphine.fr/~mlampis/Graphs/>

- **•** Grade Calculation:
	- Midterm Exam: 30% of grade (likely date: $25/10$)
	- Final Exam: 70% of grade
- Material to Study:
	- Slides (posted on web page)
	- TD exercises and solutions (posted on web page)
	- **•** Further reading material linked on web page
- Please come to class and participate actively!

 QQQ

[Motivation](#page-7-0)

重

 2990

イロト イ部 トイヨ トイヨト

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

目

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

Application Examples:

目

 Ω

 $A \Box B$ A

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

Application Examples:

4 D F → ● → Ω

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

Application Examples:

Telecommunication Network

э

 QQQ

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

Application Examples:

Protein-Protein Interactions

4 0 F

 Ω

Definition

(Informal) A graph is a mathematical object that models identical pair-wise symmetric relations between objects.

Definition

A simple graph $G = (V, E)$ is a pair of a set of vertices and edges, with $E \subseteq {V \choose 2}$.

- Pair-wise. $e = \{u, v\}$, for $e \in E$, $u, v \in V$. We write simply $e = uv$.
	- Otherwise: hypergraph
- **o** Identical.
	- Otherwise: weighted graph, multi-graph
- **•** Symmetric.
	- Otherwise: directed graph

 Ω

Wolf

Cabbage

重

 298

イロト イ部 トイヨ トイヨト

重

 299

イロト イ部 トイモ トイモト

重

 298

イロト イ部 トイモ トイモト

Mathematical definition:

- $V = \{f, w, g, h, d, c\}$
- \bullet $E = \{wg, gc, wh, fg, fh, hd\}$

4 **D F**

э

 QQQ

[Basic Definitions](#page-18-0)

重

 2990

イロト イ部 トイヨ トイヨト

Graph Representations – Isomorphism

- $n \times n$ symmetric matrix
- 0 diagonal
- Number of $1's = 2m$

目

 QQ

 \rightarrow \equiv \rightarrow

IN

Graph Representations – Isomorphism

← ロ → → ← 何 →

- \bullet n \times m matrix
- Two 1's per column
- Number of $1's = 2m$

э

 QQQ

Ξ

Graph Representations – Isomorphism

- Several different matrices could represent the same graph!
- Permuting rows/columns does not change the graph.

 Ω

[Algorithmic Background](#page-22-0)

重

 2990

イロト イ部 トイヨ トイヨト

Polynomial Time

Algorithmic Efficiency: we care about

- **Time/Space Complexity**
- In the worst case
- As function of input size (n)
- Polynomial in n is good!

目

 QQ

Polynomial Time

Algorithmic Efficiency: we care about

- Time/Space Complexity
- In the worst case
- As function of input size (n)
- Polynomial in n is good!
- Precise representation of graph is irrelevant, since converting from one to other can be done in time polynomial in the size of the graph.
- **Attn:** This is no longer true if we truly care about efficiency (e.g. linear vs. quadratic time).

 QQQ

- Will deal with problems of form: given graph G , does G satisfy property X?
	- Meaning: come up with an algorithm that decides this!

 Ω

イロト イ何 トイヨト イヨト ニヨ

- Will deal with problems of form: given graph G, does G satisfy property X?
	- Meaning: come up with an algorithm that decides this!
- Good case: poly-time in $n = |V(G)|$.

KOD KARD KED KED ORA

- Will deal with problems of form: given graph G, does G satisfy property X?
	- Meaning: come up with an algorithm that decides this!
- Good case: poly-time in $n = |V(G)|$.
- Also interesting:
	- For graphs G that satisfy X, there exist short certificates that we can verify.
		- $\bullet \Rightarrow$ class NP

KED KARD KED KED E VOOR

- Will deal with problems of form: given graph G, does G satisfy property X?
	- Meaning: come up with an algorithm that decides this!
- Good case: poly-time in $n = |V(G)|$.
- Also interesting:
	- For graphs G that satisfy X, there exist short certificates that we can verify.

 $\bullet \Rightarrow$ class NP

• For graphs G that do not satisfy X , there exist short counter-certificates that we can verify.

 $\bullet \Rightarrow$ class coNP

KED KARD KED KED E VOOR

- Will deal with problems of form: given graph G, does G satisfy property X?
	- Meaning: come up with an algorithm that decides this!
- Good case: poly-time in $n = |V(G)|$.
- Also interesting:
	- For graphs G that satisfy X, there exist short certificates that we can verify.

 $\bullet \Rightarrow$ class NP

• For graphs G that do not satisfy X , there exist short counter-certificates that we can verify.

 $\bullet \Rightarrow$ class coNP

P ⊆ NP∩coNP ⊆ NP ⊆ PSPACE

KED KARD KED KED E VOOR

[Notation Basics](#page-30-0)

 OQ

イロト イ団 トイ ヨト イヨト 一番

- $n = |V|, m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree

 Ω

イロト イ何 トイヨト イヨト ニヨー

- $n = |V|$, $m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree

• Clique K_n : all *n* vertices adjacent

 Ω

イロト イ何 トイヨト イヨト ニヨー

- $n = |V|$, $m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree
- Clique K_n : all *n* vertices adjacent
- Path P_n : path on *n* vertices

 Ω

イロト イ押 トイヨ トイヨ トーヨ

- $n = |V|$, $m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree
- Clique K_n : all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices

 Ω

イロト イ押 トイヨ トイヨ トー ヨ

- $n = |V|$, $m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree
- Clique K_n : all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices
- Wheel W_n : C_n plus a universal vertex

イロト イ押 トイヨ トイヨ トーヨ

 QQQ
Conventions and Interesting Graphs

- $n = |V|$, $m = |E|$
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- $N(v)$: set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree $d(v)$: number of edges incident on v
- ∆: maximum degree
- Clique K_n : all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices
- Wheel W_n : C_n plus a universal vertex

Q: Is there a polynomial-time algorithm to decide if a graph belongs in one of these classes?

KED KARD KED KED E VOOR

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

E

 Ω

 $A \Box B$ A

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

4 **D F** ∢母 э

 QQ

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

э

 QQ

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f: V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

 QQQ

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f: V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

• Is Graph Isomorphism in P? in NP? in coNP?

 Ω

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f: V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

- Is Graph Isomorphism in P? in NP? in coNP?
- State of the art: in NP, almost in coNP, almost in P (solvable in $n^{(\log n)^{O(1)}})$

 Ω

イロト イ何 トイヨト イヨト ニヨー

Simple facts about Degrees

Theorem

For all $G = (V, E)$ we have $\sum_{v \in V} \deg(v) = 2|E|.$

Theorem

For all $G = (V, E)$ the number of vertices of odd degree in G is even.

Theorem

Every graph G has two vertices with the same degree.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Paths and Connectivity

Definition

A path is an ordered sequence of distinct vertices v_1, v_2, \ldots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

 QQQ

Paths and Connectivity

Definition

A path is an ordered sequence of distinct vertices v_1, v_2, \ldots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

Can we decide in polynomial time if there is a path from s to t ?

 Ω

If A is the adjacency matrix of G, what is A^2 ?

 \equiv OQ

イロト イ部 トイヨ トイヨト

If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all i ≥ 1 , $(A + I)^i$ has a positive entry in position $[x, y]$ is and only if there is a path of length at most i from x to y .

If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all i ≥ 1 , $(A + I)^i$ has a positive entry in position $[x, y]$ is and only if there is a path of length at most i from x to y .

Proof.

Induction:

- $\bullet i = 1:$ easy
- Suppose lemma proved for *i*, try $i + 1$.
	- Entry $[x, y]$ of $(A + I)^{i+1}$ is positive iff exists z such that $[x, z]$ is positive in $(A + I)^{i}$ and $[z, y]$ is positive in $(A + I)$.
	- By inductive hypothesis: dist(x, z) $\leq i$, dist(z, y) ≤ 1 , so $dist(x, z) \leq i + 1$ as desired.
	- Converse: dist $(x, y) \leq i + 1 \Rightarrow \exists z$ such that $dist(x, z) \leq i$ and $dist(z, v) \leq 1$...

If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all i ≥ 1 , $(A + I)^i$ has a positive entry in position $[x, y]$ is and only if there is a path of length at most i from x to y .

Algorithm: compute $(A + I)^{n-1}$ and this tells us for any two vertices whether they are connected, since a simple path cannot have length more than $n-1$.

NB: Not the most efficient algorithm, but polynomial in n (why?)

 Ω

一番

 2990

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

- **Subgraph Containment**
- **Short-Long Paths**
- Interesting Sets
- **•** Coloring
- G_1 is a subgraph of G_2 if it can be obtained from G_2 by deleting vertices and edges.
- \bullet G_1 is an **induced** subgraph of $G₂$ if we only delete vertices.
- \bullet G_1 is a **spanning** subgraph of $G₂$ if we only delete edges.

イロト イ押ト イヨト イヨト

• Typical question: does G contain a given graph H?

- **Subgraph Containment**
- **Short-Long Paths**
- Interesting Sets
- **•** Coloring
- A Hamiltonian Path is a path that visits every vertex exactly once.
- An Eulerian Walk is a walk (path that may repeat vertices) that visits every edge exactly once.
- Typical question: find the shortest/longest path between two vertices.
- Related: Is G Hamiltonian? Eulerian?

イロト イ押ト イヨト イヨト

- **Subgraph Containment**
- **Short-Long Paths**
- Interesting Sets
- **•** Coloring
- An independent set is a set of vertices inducing no edges.
- A vertex cover is a set of vertices that intersects all edges.
- A dominating set is a set of vertices that is adjacent to all vertices.
- \bullet . . .
- Typical question: Find the smallest/largest set of vertices satisfying some property.

イロト イ押ト イヨト イヨト

- Subgraph Containment
- **Short-Long Paths**
- Interesting Sets
- **•** Coloring
- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

イロト イ押ト イヨト イヨト

 QQ

- **Subgraph Containment**
- **Short-Long Paths**
- Interesting Sets
- **•** Coloring
- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

イロト イ母ト イヨト イヨト

Many of these questions are **Hard**! Which are easy and for which classes of graphs? This is something we will discuss. . .

 QQ

一番

 2990

イロト イ部 トイヨ トイヨト

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

目

 QQ

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

 QQ

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1 , G_2 are isomoprhic, then they have the same degree sequences.

 QQQ

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1 , G_2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not?

 QQQ

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1 , G_2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not? Counter-example: C_5 with two leaves attached in different places.

 QQ

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

E

 Ω

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- $d_1 \leq n-1$ and $d_n > 0$
- If $d_n = 0$ then $d_1 < n-1$

 Ω

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- \bullet d₁ \leq n $-$ 1 and d_n \geq 0
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i\in [n]}d_i$ must be even

 Ω

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- \bullet d₁ \leq n $-$ 1 and d_n \geq 0
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i\in [n]}d_i$ must be even
- Anything else?

 Ω

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- \bullet d₁ \leq n $-$ 1 and d_n \geq 0
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i\in [n]}d_i$ must be even
- Anything else?
- \bullet (6, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1)?
- \bullet (6, 5, 5, 4, 3, 2, 1)?

 Ω

イロト イ何 トイヨト イヨト ニヨー

Theorem

 (d_1, d_2, \ldots, d_n) is graphic if and only if $(d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

 Ω

Theorem

 (d_1, d_2, \ldots, d_n) is graphic if and only if $(d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

Theorem \rightarrow Algorithm:

- **•** If we have a sequence violating basic checks, say No.
- If we have $(0, 0, 0, \ldots, 0)$, say Yes.
- Subtract 1 from the first d_1 elements after the first one, re-sort if needed, check new sequence (recurse).
- Complexity: polynomial in $\sum_i d_i$

KED KARD KED KED E VOOR

Theorem

 (d_1, d_2, \ldots, d_n) is graphic if and only if $(d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

Proof.

New sequence is graphic \Rightarrow original sequence is graphic:

Add a new vertex and connect to d_1 vertices of highest degree.

KED KARD KED KED E VOOR

Theorem

 (d_1, d_2, \ldots, d_n) is graphic if and only if $(d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

Proof.

Original sequence is graphic \Rightarrow new sequence is graphic:

- Let $G = (V, E)$ be the graph, s the vertex of degree d_1 .
- If s connected to d_1 vertices of highest degree in $G s$, done.
- \bullet Otherwise, t is a vertex in the d_1 highest degree vertices of $G s$ with st $\notin E$.
- s has a neighbor x that is not in the d_1 high deg vertices
- \bullet t has a neighbor w that is not a neighbor of x
- Exchange sx, tw with st, xw , keeping the degree sequence constant. Repeat as needed. . .