Graph Theory: Lecture 1

Michael Lampis

September 9, 2024

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 1 / 24

3

< □ > < 同 > < 回 > < 回 > < 回 >

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 2 / 24

æ

< □ > < □ > < □ > < □ > < □ >

- This is a Math course...
 - Graph Theory is a branch of discrete Math
 - Will focus heavily on proofs

3

< □ > < 同 > < 回 > < 回 > < 回 >

- This is a Math course...
 - Graph Theory is a branch of discrete Math
 - Will focus heavily on proofs
- ... taught from a (theoretical) computer science perspective
 - Will frequently discuss algorithms/complexity implications
 - Will NOT program anything!

< □ > < □ > < □ > < □ > < □ > < □ >

- This is a Math course...
 - Graph Theory is a branch of discrete Math
 - Will focus heavily on proofs
- ... taught from a (theoretical) computer science perspective
 - Will frequently discuss algorithms/complexity implications
 - Will NOT program anything!
- Will sometimes discuss potential applications, but not much
 - How graphs model real-world problems is an interesting topic for another course.
 - We will mostly assume graphs are given and study them as math objects.

< □ > < □ > < □ > < □ > < □ > < □ >

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page: https://www.lamsade.dauphine.fr/~mlampis/Graphs/
- Grade Calculation:
 - Midterm Exam: 30% of grade (likely date: 25/10)
 - Final Exam: 70% of grade
- Material to Study:
 - Slides (posted on web page)
 - TD exercises and solutions (posted on web page)
 - Further reading material linked on web page

イロト イヨト イヨト

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page:
 - https://www.lamsade.dauphine.fr/~mlampis/Graphs/
- Grade Calculation:
 - Midterm Exam: 30% of grade (likely date: 25/10)
 - Final Exam: 70% of grade
- Material to Study:
 - Slides (posted on web page)
 - TD exercises and solutions (posted on web page)
 - Further reading material linked on web page
- Please come to class and participate actively!

イロト イヨト イヨト

Motivation

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 5 / 24

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

Application Examples:

3

イロト イポト イヨト イヨト

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

Application Examples:

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

Application Examples:

Telecommunication Network

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

Application Examples:

Protein-Protein Interactions

Definition

(Informal) A graph is a mathematical object that models **identical pair-wise symmetric relations** between objects.

Definition

A simple graph G = (V, E) is a pair of a set of vertices and edges, with $E \subseteq \binom{V}{2}$.

- Pair-wise. $e = \{u, v\}$, for $e \in E, u, v \in V$. We write simply e = uv.
 - Otherwise: hypergraph
- Identical.
 - Otherwise: weighted graph, multi-graph
- Symmetric.
 - Otherwise: directed graph

Wolf

Cabbage

3

イロト イヨト イヨト イヨト

3

<ロト <問ト < 目と < 目と

æ

< □ > < □ > < □ > < □ > < □ >

Mathematical definition:

- $V = \{f, w, g, h, d, c\}$
- $E = \{wg, gc, wh, fg, fh, hd\}$

Basic Definitions

Michael Lampis

2

<ロト <問ト < 目と < 目と

Graph Representations – Isomorphism

Graph: a b c d

- *n* × *n* symmetric matrix
- 0 diagonal
- Number of 1's = 2m

3

< □ > < □ > < □ > < □ > < □ > < □ >

Graph Representations – Isomorphism

Incidence Matrix:						
	ab	ae	bf	bc	de	ef
а	1	1	0	0	0	0
b	1	0	1	1	0	0
С	0	0	0	1	0	0
d	0	0	0	0	1	0
e	0	1	0	0	1	1
f	0	0	1	0	0	1

- $n \times m$ matrix
- Two 1's per column
- Number of 1's = 2m

-

э

Graph Representations – Isomorphism

- Several different matrices could represent the same graph!
- Permuting rows/columns does not change the graph.

э

Algorithmic Background

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 10 / 24

æ

< □ > < □ > < □ > < □ > < □ >

Polynomial Time

Algorithmic Efficiency: we care about

- Time/Space Complexity
- In the worst case
- As function of input size (n)
- Polynomial in *n* is good!

3

< □ > < □ > < □ > < □ > < □ > < □ >

Polynomial Time

Algorithmic Efficiency: we care about

- Time/Space Complexity
- In the worst case
- As function of input size (n)
- Polynomial in *n* is good!
- Precise representation of graph is irrelevant, since converting from one to other can be done in time polynomial in the size of the graph.
- Attn: This is no longer true if we truly care about efficiency (e.g. linear vs. quadratic time).

- Will deal with problems of form: given graph *G*, does *G* satisfy property *X*?
 - Meaning: come up with an algorithm that decides this!

イロト イポト イヨト イヨト 二日

- Will deal with problems of form: given graph *G*, does *G* satisfy property *X*?
 - Meaning: come up with an algorithm that decides this!
- Good case: poly-time in n = |V(G)|.

- Will deal with problems of form: given graph *G*, does *G* satisfy property *X*?
 - Meaning: come up with an algorithm that decides this!
- Good case: poly-time in n = |V(G)|.
- Also interesting:
 - For graphs G that satisfy X, there exist short certificates that we can verify.
 - $\bullet \ \Rightarrow \mathsf{class} \ \mathsf{NP}$

- Will deal with problems of form: given graph *G*, does *G* satisfy property *X*?
 - Meaning: come up with an algorithm that decides this!
- Good case: poly-time in n = |V(G)|.
- Also interesting:
 - For graphs G that satisfy X, there exist short certificates that we can verify.

 $\bullet \ \Rightarrow \mathsf{class} \ \mathsf{NP}$

- For graphs G that do not satisfy X, there exist short counter-certificates that we can verify.
 - \Rightarrow class coNP

- Will deal with problems of form: given graph *G*, does *G* satisfy property *X*?
 - Meaning: come up with an algorithm that decides this!
- Good case: poly-time in n = |V(G)|.
- Also interesting:
 - For graphs G that satisfy X, there exist short certificates that we can verify.

 $\bullet \ \Rightarrow \mathsf{class} \ \mathsf{NP}$

• For graphs G that do not satisfy X, there exist short counter-certificates that we can verify.

• \Rightarrow class coNP

 $\bullet \ \mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{co}\mathsf{NP} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$

Notation Basics

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 13 / 24

3

<ロト <問ト < 目と < 目と

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

• Clique *K_n*: all *n* vertices adjacent

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique *K_n*: all *n* vertices adjacent
- Path P_n : path on *n* vertices

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique *K_n*: all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices

< ロト < 同ト < ヨト < ヨト

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique *K_n*: all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices
- Wheel W_n : C_n plus a universal vertex

(日) (同) (三) (三)
Conventions and Interesting Graphs

- n = |V|, m = |E|
- *uv* ∈ *E* ⇒ *u*, *v* are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ : maximum degree

- Clique *K_n*: all *n* vertices adjacent
- Path P_n : path on *n* vertices
- Cycle C_n : cycle on *n* vertices
- Wheel W_n : C_n plus a universal vertex

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Q: Is there a polynomial-time algorithm to decide if a graph belongs in one of these classes?

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

3

イロト イポト イヨト イヨト

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

< 4[™] >

э

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

э

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f : V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

< □ > < □ > < □ > < □ > < □ > < □ >

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f : V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

• Is Graph Isomorphism in P? in NP? in coNP?

< □ > < 同 > < 回 > < 回 > < 回 >

Problem

Given two (representations of) graphs G_1, G_2 , decide if they are the same (?) graph.

Definition

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if and only if there exists a bijective function $f : V_1 \to V_2$ such that for all $u, v \in V_1$ we have $uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$.

- Is Graph Isomorphism in P? in NP? in coNP?
- State of the art: in NP, almost in coNP, almost in P (solvable in $n^{(\log n)^{O(1)}}$)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Simple facts about Degrees

Theorem

For all G = (V, E) we have $\sum_{v \in V} \deg(v) = 2|E|$.

Theorem

For all G = (V, E) the number of vertices of odd degree in G is even.

Theorem

Every graph G has two vertices with the same degree.

イロト イポト イヨト イヨト

Paths and Connectivity

Definition

A path is an ordered sequence of **distinct** vertices v_1, v_2, \ldots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

(日) (四) (日) (日) (日)

Paths and Connectivity

Definition

A path is an ordered sequence of **distinct** vertices v_1, v_2, \ldots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

Can we decide in polynomial time if there is a path from s to t?

• □ ▶ • 4□ ▶ • Ξ ▶ •

• If A is the adjacency matrix of G, what is A^2 ?

э

イロト イヨト イヨト

• If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all $i \ge 1$, $(A + I)^i$ has a positive entry in position [x, y] is and only if there is a path of length at most i from x to y.

• If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all $i \ge 1$, $(A + I)^i$ has a positive entry in position [x, y] is and only if there is a path of length at most i from x to y.

Proof.

Induction:

- *i* = 1: easy
- Suppose lemma proved for i, try i + 1.
 - Entry [x, y] of $(A + I)^{i+1}$ is positive iff exists z such that [x, z] is positive in $(A + I)^i$ and [z, y] is positive in (A + I).
 - By inductive hypothesis: dist(x, z) ≤ i, dist(z, y) ≤ 1, so dist(x, z) ≤ i + 1 as desired.
 - Converse: $\operatorname{dist}(x, y) \leq i + 1 \Rightarrow \exists z \text{ such that } \operatorname{dist}(x, z) \leq i \text{ and } \operatorname{dist}(z, y) \leq 1...$

• If A is the adjacency matrix of G, what is A^2 ?

Lemma

For all $i \ge 1$, $(A + I)^i$ has a positive entry in position [x, y] is and only if there is a path of length at most i from x to y.

Algorithm: compute $(A + I)^{n-1}$ and this tells us for any two vertices whether they are connected, since a simple path cannot have length more than n - 1.

NB: Not the most efficient algorithm, but polynomial in n (why?)

Michael Lampis

Graph Theory: Lecture 1

September 9, 2024 19 / 24

3

<ロト < 四ト < 三ト < 三ト

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- *G*₁ is a subgraph of *G*₂ if it can be obtained from *G*₂ by deleting vertices and edges.
- G₁ is an **induced** subgraph of G₂ if we only delete vertices.
- G₁ is a **spanning** subgraph of G₂ if we only delete edges.

< □ > < □ > < □ > < □ > < □ > < □ >

• Typical question: does G contain a given graph H?

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A Hamiltonian Path is a path that visits every vertex exactly once.
- An Eulerian Walk is a walk (path that may repeat vertices) that visits every edge exactly once.
- Typical question: find the shortest/longest path between two vertices.
- Related: Is *G* Hamiltonian? Eulerian?

< □ > < 同 > < 回 > < 回 > < 回 >

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- An independent set is a set of vertices inducing no edges.
- A vertex cover is a set of vertices that intersects all edges.
- A dominating set is a set of vertices that is adjacent to all vertices.
- . . .
- Typical question: Find the smallest/largest set of vertices satisfying some property.

< □ > < □ > < □ > < □ > < □ > < □ >

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

< □ > < □ > < □ > < □ > < □ > < □ >

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

< □ > < 同 > < 回 > < 回 > < 回 >

Many of these questions are **Hard**! Which are easy and for which classes of graphs? This is something we will discuss...

- 2

ヘロト 人間 トメヨトメヨト

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1 , G_2 are isomoprhic, then they have the same degree sequences.

< ロト < 同ト < ヨト < ヨト

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1, G_2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not?

< ロト < 同ト < ヨト < ヨト

Definition

The *degree sequence* of a graph is an ordered (in non-increasing order) list of the degrees of its vertices.

Fact

If G_1, G_2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not? Counter-example: C_5 with two leaves attached in different places.

< ロト < 同ト < ヨト < ヨト

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

3

イロト イポト イヨト イヨト

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- $d_1 \leq n-1$ and $d_n \geq 0$
- If $d_n = 0$ then $d_1 < n-1$

イロト 不得 トイヨト イヨト 二日

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- $d_1 \leq n-1$ and $d_n \geq 0$
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i \in [n]} d_i$ must be even

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- $d_1 \leq n-1$ and $d_n \geq 0$
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i \in [n]} d_i$ must be even
- Anything else?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Given non-increasing sequence (d_1, d_2, \ldots, d_n) , does there exist G with this sequence?

Basic sanity checks:

- $d_1 \leq n-1$ and $d_n \geq 0$
- If $d_n = 0$ then $d_1 < n-1$
- $\sum_{i \in [n]} d_i$ must be even
- Anything else?
- (6,3,3,3,3,2,2,2,2,1,1)?
- (6, 5, 5, 4, 3, 2, 1)?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

 $(d_1, d_2, ..., d_n)$ is graphic if and only if $(d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n)$ is graphic.

イロト 不得下 イヨト イヨト 二日

Theorem

 $(d_1, d_2, ..., d_n)$ is graphic if and only if $(d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n)$ is graphic.

Theorem \rightarrow Algorithm:

- If we have a sequence violating basic checks, say No.
- If we have (0, 0, 0, ..., 0), say Yes.
- Subtract 1 from the first *d*₁ elements after the first one, re-sort if needed, check new sequence (recurse).
- Complexity: polynomial in $\sum_i d_i$

Theorem

 $(d_1, d_2, ..., d_n)$ is graphic if and only if $(d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n)$ is graphic.

Proof.

New sequence is graphic \Rightarrow original sequence is graphic:

Add a new vertex and connect to d_1 vertices of highest degree.

イロト イポト イヨト イヨト 二日

Theorem

 $(d_1, d_2, ..., d_n)$ is graphic if and only if $(d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n)$ is graphic.

Proof.

Original sequence is graphic \Rightarrow new sequence is graphic:

- Let G = (V, E) be the graph, s the vertex of degree d_1 .
- If s connected to d_1 vertices of highest degree in G s, done.
- Otherwise, t is a vertex in the d_1 highest degree vertices of G s with $st \notin E$.
- s has a neighbor x that is not in the d_1 high deg vertices
- t has a neighbor w that is not a neighbor of x
- Exchange *sx*, *tw* with *st*, *xw*, keeping the degree sequence constant. Repeat as needed...

Michael Lampis