
Algorithms M2–IF TD 5

November 10, 2021

1 Weighted Independent Set on Paths

(Exercise 6.3 of [DPV]) We are considering opening restaurants along a high-
way from city A to city B. The possible locations are given to us as an array
D[1 . . . n], where D[i] is the distance of location i from A. Each location has an
expected profit P [i]. We have unlimited budget, however, we do not want to
open two restaurants which are at distance at most k kilometers. Given this
constraint, describe a polynomial-time (in n) algorithm that selects the locations
that maximize the total expected profit.

Solution:
Let M [i] be the maximum profit we can expect from a solution that is only

allowed to use locations 1, . . . , i. Clearly, M [1] = P [1] and the value we are
interested in is M [n]. We now claim the following relation:

M [i] = max{M [i− 1], P [i] + max
j:D[i]−D[j]≥k

M [j]}

Indeed, if we are given the option to use location i, we have two choices:
either we don’t use it, so the best we can do is the best we can do using locations
1 . . . i−1, or we do, which gives us profit P [i] plus the best we can do if we only
use locations j such that D[i]−D[j] ≥ k.

Example: suppose k = 1 and all locations are at distance 1 from each other.
Let

P [] = [3, 2, 5, 4, 3, 7, 5]

We have

M [] = [3, 3, 8, 8, 11, 15, 16]

so the best solution takes locations 1, 3, 5, 7.

2 Max Sum Sub-interval

We are given an array A[1 . . . n] of positive and negative integers. We want to

calculate two integers a, b such that
∑b

i=a A[i] is maximized.

1



• Observe that this problem is trivial to solve in O(n3).

• Give an algorithm that solves this problem in time O(n).

Solution:
It is clear that a, b ∈ {1, . . . , n} so we can try all possible O(n2) values for

a, b. For each pair a, b, calculating the sum of A[a . . . b] can be done in O(n)
time. So the total running time is O(n3).

Let us try to find a better algorithm. We first construct an array S[1 . . . n]

defined as S[i] =
∑i

i=1 A[i]. Observe that the obvious way to compute S takes
time O(n2) (we spend O(n) per element), however, we observe that S[i + 1] =
S[i]+A[i+1]. Therefore, S can be computed in time O(n). We now see that what

we are looking for is the numbers a, b which maximize S[b]−S[a−1] =
∑b

i=a A[i].
Clearly, this problem can be solved in O(n2) (we check all pairs a, b).

Let us try to do even better. Define M [i] = maxj<i

∑i
k=j A[k]. In other

words, if we fix i to be the last element of the interval we are looking for, M [i]
is the value of the optimal solution we seek. Therefore, the value we want is
maxi∈{1,...,n}M [i]. We would like to show that M [i] can be computed in O(1)
time per element.

Indeed, assume that we have calculated M [i − 1]. Then, M [i] = A[i] +
max{M [i − 1], 0}. To see this observe that the best interval ending at i will
either contain nothing else (so it has value A[i]), or it must contain the best
interval ending at i− 1.

3 Longest Common Subsequence

We are given two strings over the alphabet {A,B,C, . . . , Z}. For example,
the strings s1 =ILOVEALGORITHMS and s2 =VACANCESDENOEL. A subsequence of
a string s is a string we can obtain by deleting some of the letters of s. For
example, LOVE is a subsequence of s1, LOLO is also a subsequence of s1 (it doesn’t
matter that its letters are not consecutive is s1), but AGORA is not a subsequence
of s1.

1. Given two strings s1, s2, give a polynomial-time algorithm which decides
if s2 is a subsequence of s1. Prove the correctness of your algorithm.

2. Given two strings s1, s2, give a polynomial-time algorithm which calculates
the length of the longest string s′ which is a subsequence of both s1, s2.

Solution:
For the first problem, we treat the two strings as arrays s1[1 . . . n] and

s2[1 . . .m]. If m > n then we reply NO and this is clearly correct as s2 cannot
be a subsequence of a shorter string. If m == 0 (that is, s2 is empty) we answer
YES, as the empty string is trivially a subsequence of any string.

If m ≤ n, then we compare s1[1] == s2[1]. If s1[1] == s2[1] then we call the
same algorithm for strings s1[2 . . . n] and s2[2 . . . n] and return its response. If

2



s1[1]! = s2[1] then we call the same algorithm on s1[2 . . . n] and s2 and return
its response.

This algorithm clearly runs in polynomial time, since each recursive call
reduces n by 1 (complexity: T (n) ≤ T (n− 1) + O(1) = O(n)).

Let us prove correctness. For the base cases (m == 0 or m > n) the al-
gorithm is trivially correct, so let us look at the two recursive cases. Suppose
s1[1] == s2[1]. If the recursive call returns YES, that is, s2[2 . . . n] is a subse-
quence of s1[2 . . . n], we see that s2 is a subsequence of s1. If on the other hand
the recursive call returns NO, it cannot be the case that s2 is a subsequence
of s1, so our response is correct. Suppose then that s1[1] 6= s2[1]. Then, the
first letter of s1 cannot be used in finding the subsequence s2, so our algorithm
correctly discards it.

Let us now discuss the second problem. We define L[i, j] as the length of
the longest common subsequence of the strings s1[1 . . . i] and s2[1 . . . j]. What
we are interested in calculating is L[n,m]. To simplify presentation we consider
the variable ranges i ∈ {0, . . . n} and j ∈ {0, . . . ,m}. By definition L[0, j] =
L[i, 0] = 0 for all i, j, as the longest common subsequence of any string with the
empty string has length 0.

The table L[i, j] has size O(nm). We now need to show how to compute
L[i, j] using values L[i′, j′] where i′ < i, j′ < j. Suppose that s1[i] 6= s2[j].
Then to obtain a common subsequence we must delete either s1[i] or s2[j].
Therefore, in this case L[i, j] = max{L[i − 1, j], L[i, j − 1]}. If on the other
hand, s1[i] = s2[j], then the common subsequence must contain this last letter,
so L[i, j] = 1 + L[i− 1, j − 1]. We have:

L[i, j] =

 0 if i = 0 or j = 0
1 + L[i− 1, j − 1] if s1[i] = s2[j]
max{L[i− 1, j], L[i, j − 1]} otherwise

Calculating each L[i, j] value takes O(1) time, so the algorithm takes O(nm)
time.

4 The Gas Station Problem

We want to drive from city A to city B along a highway of length k kilometers.
Our car has a tank with a capacity of L liters and we start out with a full tank
from city A. To simplify things, suppose that our car uses 1 liter per kilometer
of driving.

We are given two arrays D[1 . . . n] and P [1 . . . n]. The first array contains
the positions of gas stations along the way (that is, the distance of each gas
station from A). The second array has the price of gas for each gas station. So,
if D[i] = di and P [i] = pi, this means that the i-th gas station is at di kilometers
from A and sells gas for pi euros per liter.

Give a polynomial-time algorithm which selects a set of gas stations to stop
at and the amount of gas to buy at each one in order to minimize the total cost

3



of driving from A to B. You may assume that it’s OK to arrive at B with an
empty tank. Your algorithm should run in time polynomial in n,L.

Solution:
To simplify presentation, assume that D is sorted (it gives gas stations in

order of increasing distance from A), that gas station 0 is in A and that the
n-th gas station in D is at distance k from A (so the last gas station is in B).

We want to calculate the value C[i, j] which represents the minimum cost of
driving from gas station i to B if we start off with j liters of gas. We have:

• The value we want to calculate is C[0, L].

• For C[i, j] the variables take values i ∈ {0, . . . , n} and j ∈ {0, . . . , L}.

We therefore have a table of size O(nL). We now need to describe how to
compute C[i, j] assuming we have already computed C[i′, j] for i′ > i.

Suppose that we find ourselves at gas station i (so, D[i] kilometers from A),
with j liters of gas. If j ≥ k −D[i] then we can just drive to B, so C[i, j] = 0.
Otherwise, we can buy b liters of gas from this station (at a cost of b · P [i])
and then drive to another gas station i′. When we arrive there we will have
j′ = j + b − (D[i′] − D[i]) liters of gas left. The optimal solution from that
point will therefore cost C[i′, j′]. We now select the combination of b, i′ that
minimizes this total cost. In particular:

C[i, j] = min
b∈{0,...,L}

min
i′∈{i+1,...,n}

(b · P [i] + C[i′, j + b−D[i′] + D[i]])

Calculating each entry of the table above therefore takes O(nL), so the total
complexity is O(n2L2).

5 Inventory Problem

You own a company that sells cars. For this exercise we will try to minimize the
inventory cost of your company, that is, the cost of storing the cars in a garage.

You have a garage with space for S cars. Storing a car for a week in this
garage costs C euros per car. When your garage is running low you can order
more cars from the factory. This has a delivery cost of K, independent of how
many cars you ordered.

You are given an array which estimates the expected demand for cars in the
next few weeks: the array D[1 . . . n] has value D[i] for the number of cars you
would like to have available in your garage to sell during week i.

We want to calculate an ordering and storage schedule which satisfies the
following:

• We never store more than S cars in the garage.

4



• At the beginning of each week i, the number of cars in the garage is
at least D[i]. In other words, if at the beginning of week i the garage
contains fewer than D[i] cars, we must order more cars (and pay K for
the delivery) so that this week’s demand is satisfied.

• The total storage cost is minimized.

You may assume that the garage contains S0 < S cars in the beginning.
Your algorithm should run in time polynomial in n and S.

Solution:
We want to calculate the following value: A[i, j] is defined as the minimum

cost of any feasible storage plan which satisfies all demands from week i up to
week n, if we start with a garage that contains j cars. Note that i ∈ {1, . . . n}
and j ∈ {0, . . . , S} so the size of the table A[i, j] is O(nS).

We observe that:

• The value we are interested in is A[1, S0]. We want to satisfy demands
from week 1 to n and start with S0 cars.

• The values A[n, j] are easy to compute. Indeed, if j ≥ D[n] then A[n, j] =
0, otherwise A[n, j] = K (because we have to order cars to satisfy the
demand for week n).

We now have a base case. Building on this we want to calculate A[i, j] using
values A[i + 1, j′]. Consider now an entry A[i, j] for which j < D[i]. In this
situation we have to order more cars, but we have to decide how many. Suppose
that we decide to order ` cars, such that ` + j ≥ D[i]. Then, we will pay K
for delivery, and (` + j −D[i]) · C for storage for one week. For the rest of the
schedule, we can look up the value A[i + 1, j + `−D[i]]. On the other hand, if
j ≥ D[i], we do not have to order more cars but we can still do it. If we order `
cars our cost is as previously, while if we don’t, we pay (j−D[i]) ·C for storage,
plus the cost for the remaining weeks which is given by A[i + 1, j − D[i]. We
have

A[i, j] = min
`:j+`≥D[i]∧`≥0

(A[i + 1, j + `−D[i]] + C · (j + `−D[i]) + K · [` > 0])

where [` > 0] is the value that is 1 if ` > 0 and 0 otherwise. Each entry
of this table can be computed in O(S) time, so the algorithm takes O(nS2) in
total.

5


