
Algorithms M2–IF TD 4

November 2, 2021

1 Recurrence Relations

Solve the following recurrence relations (it suffices to give an answer in Θ nota-
tion).

1. T (n) = 2T (n/3) + 1

2. T (n) = 5T (n/4) + n

3. T (n) = 9T (n/3) + n2

4. T (n) = T (n− 1) + 2

5. T (n) = T (n− 1) + n

6. T (n) = T (n− 1) + 2n

2 Median in Two Sorted Arrays

We are given two sorted arrays A,B of sizes n,m. Suppose for simplicity that
all their elements are distinct. We are also given an integer k and are asked to
return the k-th smallest number of the union of the two arrays.

Clearly, one way to solve the problem is to run the Merge procedure on A,B,
producing a sorted array C, and output C[k]. This will take O(n + m). Give
an algorithm for this problem that runs in O(log n + logm).

3 Silly-Sort

Consider the following sorting algorithm: given an array A on n elements:

1. If n ≤ 3 sort A with bubblesort. Otherwise:

2. Sort the array A[1, . . . , 2n/3]

3. Sort the array A[n/3, . . . , n]

4. Sort the array A[1, . . . , 2n/3]

Prove that this algorithm is correct and calculate its complexity.

1



4 Majority

We are given an unsorted array A of n (not necessarily distinct) integers. We
will say that an element x is the “majority” element of A if x appears strictly
more than n/2 times in A. Of course, A does not necessarily have a majority
element. For example if A = [1, 2, 3, 1, 1], then 1 is the majority element, while
if A = [1, 2, 3, 2], no majority element exists.

1. Give an O(n log n)-time algorithm which first sorts A to determine if A
has a majority element.

NB: For the remainder of this exercise assume that sorting algorithms
cannot be used, because we cannot order elements. That is, the operations
<,> do not work, but the operation == does.

2. Give an O(n log n)-time algorithm for the same problem that does not sort
A.

3. Give an O(n)-time randomized algorithm to determine if A has a majority
element and output it.

4. Give an O(n)-time deterministic algorithm for the same problem.

5 Semi-sorted Matrix

We are given an n × n matrix A that contains integers. The matrix is “semi-
sorted” in the sense that it obeys the following rules:

� All rows are sorted in increasing order: A[i, j] ≤ A[i, j + 1].

� All columns are sorted in increasing order: A[i, j] ≤ A[i + 1, j].

We are given an integer x and are asked to either find i, j so that A[i, j] = x
or return that x is not in A. In the remainder, let A1, A2, A3, A4 be the four
(n/2) × (n/2) matrices which are the four quadrants of A

1. Consider the following recursive algorithm: if n ≤ 1, check if A[1, 1] =
x; otherwise, recurse on A1, A2, A3, A4. What is the complexity of this
algorithm? Does it work if the matrix is not sorted?

2. Improve on the complexity of the above algorithm by comparing x to
A[n/2, n/2] before recursing.

3. Consider the following algorithm: we perform binary search on each row
looking for x. What is its complexity?

4. Give a linear-time algorithm for this problem.

5. Show that no algorithm can solve this problem using a sub-linear number
of comparisons (you may assume that searching an unsorted array of size
n cannot be solved using a sub-linear number of comparisons).

2



6 Squaring vs Multiplying

Let T (n) be the complexity of the best algorithm for multiplying two n-bit
integers (in class we saw that T (n) = O(nlog 3), but better algorithms exist).
Consider now an easier problem: we are given an n-bit integer a and are asked to
calculate a2. Let Q(n) be the complexity of the best algorithm for this problem.

1. Observe that Q(n) ≤ T (n).

2. Observe that Q(n) = Ω(n).

3. Show that Q(n) = Ω(T (n)). To show this assume for contradiction that
Q(n) = o(T (n)) and show how you could use a fast squaring algorithm to
improve the complexity of the best multiplication algorithm.

3


