
Algorithms M2–IF TD 4

November 8, 2021

1 Recurrence Relations

Solve the following recurrence relations (it suffices to give an answer in Θ nota-
tion).

1. T (n) = 2T (n/3) + 1

2. T (n) = 5T (n/4) + n

3. T (n) = 9T (n/3) + n2

4. T (n) = T (n− 1) + 2

5. T (n) = T (n− 1) + n

6. T (n) = T (n− 1) + 2n

Solution:

1. nlog3 2 (Master Theorem)

2. nlog4 5 (Master Theorem)

3. n2 log n (Master Theorem)

4. 2n

5. Θ(n2)

6. Θ(2n)

1

2 Median in Two Sorted Arrays

We are given two sorted arrays A,B of sizes n,m. Suppose for simplicity that
all their elements are distinct. We are also given an integer k and are asked to
return the k-th smallest number of the union of the two arrays.

Clearly, one way to solve the problem is to run the Merge procedure on A,B,
producing a sorted array C, and output C[k]. This will take O(n + m). Give
an algorithm for this problem that runs in O(log n + logm).

Solution:
We first observe that if n ≤ 1 (or m ≤ 1) the problem is easy: we use binary

search to insert the unique element of A into B, and thus obtain C in O(logm)
time. We therefore want a procedure that halves n or m in each step.

Consider the following algorithm: we compare A[n/2] to B[m/2]. Suppose
without loss of generality that A[n/2] > B[m/2]. We now have two cases:

1. If k < n/2 + m/2, then A[n/2] would be after position k in the sorted
array C. As a result, the elements in A[n/2 + 1, . . . , n] are too large and
can be deleted. This decreases the size of A by a factor of 2.

2. If k > n/2 + m/2, then B[m/2] would be before position k in the sorted
array C. So, the elements in B[1, . . . ,m/2 − 1] are too small and can be
deleted. This decreases the size of B by a factor of 2.

3 Silly-Sort

Consider the following sorting algorithm: given an array A on n elements:

1. If n ≤ 3 sort A with bubblesort. Otherwise:

2. Sort the array A[1, . . . , 2n/3]

3. Sort the array A[n/3, . . . , n]

4. Sort the array A[1, . . . , 2n/3]

Prove that this algorithm is correct and calculate its complexity.

Solution:
Correctness can be established by induction on n. The main observation is

that after the second recursive call, the n/3 largest elements of A will appear in
sorted order in positions A[2n/3 + 1, . . . , n]. To see this, we note that after the
first recursive call, the n/3 largest elements of A are in positions n/3 + 1, . . . , n.
Now, assuming that after the second recursive call the n/3 largest elements of
A are in their correct positions, the third recursive call correctly sorts the rest
of the array.

For complexity we have

T (n) ≤ 3T (2n/3) + O(1)

2

Using the Master theorem we have a = 3, b = 3/2, d = 0, so logb a =
log 3

log 3−1 ≈
1.6
0.6 ≈ 2.67. So the running time is very slow: O(n2.67).

4 Majority

We are given an unsorted array A of n (not necessarily distinct) integers. We
will say that an element x is the “majority” element of A if x appears strictly
more than n/2 times in A. Of course, A does not necessarily have a majority
element. For example if A = [1, 2, 3, 1, 1], then 1 is the majority element, while
if A = [1, 2, 3, 2], no majority element exists.

1. Give an O(n log n)-time algorithm which first sorts A to determine if A
has a majority element.

NB: For the remainder of this exercise assume that sorting algorithms
cannot be used, because we cannot order elements. That is, the operations
<,> do not work, but the operation == does.

2. Give an O(n log n)-time algorithm for the same problem that does not sort
A.

3. Give an O(n)-time randomized algorithm to determine if A has a majority
element and output it.

4. Give an O(n)-time deterministic algorithm for the same problem.

Solution:

1. Consider the following algorithm. First we sort A ((O(n log n) time) and
then we execute the algorithm below:

counter = 1
f o r i=2 to n

i f A[i]==A[i −1] then
counter++
i f counter>n/2 then return A[i]

e l s e
counter = 1

return NO

The algorithm clearly runs in O(n) time. Its idea is that the variable
counter keeps track of the number of times we have seen the current
element. If it is different from the previous element, then counter gets
value 1. Otherwise, the value of the counter is increased by 1 and we check
if the current element is already a majority.

3

2. To achieve the same complexity without sorting, we can use divide&conquer.
We first note that if we are given a candidate integer x, checking if x is
the majority element of A can be done in O(n) time (count how many
times x appears in A).

Let A1 be an array that contains the first bn/2c elements of A and A2 an
array that contains the rest. Suppose x is a majority element in A. Then
we claim that x must be a majority element of at least one of A1, A2. To see
this, suppose that x appears at most |A1|/2 times in A1 and |A2|/2 times

in A2. Then, it appears at most |A1|+|A2|
2 ≤ n

2 times in A, contradiction.

Our algorithm now recursively finds a majority element x1 in A1 (if it
exists) and a majority element x2 in A2. It then verifies if x1 or x2 are
majority elements of A. The running time is T (n) ≤ 2T (n/2) + O(n)
which gives complexity O(n log n).

3. As observed in the previous question, if we have a candidate element x,
the problem is easily solvable in O(n). A randomized algorithm could do
the following: pick a random element x = A[i], and then check if x is
a majority element. If it is, output x. If not, output that no majority
element exists.

Clearly, this algorithm runs in time O(n). If it outputs x, then the output
is correct (since we verified that x is a majority element). So we need
to calculate the probability that the algorithm incorrectly outputs that
no majority element exists. However, this is at most the probability that
the selected random element is not the majority element, therefore it is
at most 1/2. So, with probability at least 1/2 this algorithm is correct.
Repeating the algorithm 10 times brings the error probability down to
0.1%.

4. This is trickier. We do the following: for each i ∈ {1, . . . , bn/2c} we check
if A[2i] == A[2i + 1]. If the two elements are not equal we delete both
of them from A; if they are equal, we delete one of them from A. This
produces a new array A′ with size at most dn/2e. We repeat this until the
current array has size O(1). Then we run any simple algorithm to find the
majority element in the current array, if it exists. We output this element,
or NO if it does not exist.

The easy part here is the running time: this algorithm has complexity
T (n) ≤ T (n/2) + O(n) which is O(n) (using the Master theorem).

The interesting part is why this algorithm is correct. The main claim is
that if we apply the process above, A′ will have a majority element if and
only if A does, and that element will be the same number. We need to
prove two statements:

• If x is the majority element of A′, then x is the majority element
of A. Suppose |A| is even. Then |A| ≤ 2|A′|, x appears strictly
more than |A′|/2 times in A′, therefore it appears strictly more than

4

|A′| ≥ |A|/2 times in A. Similarly, if |A| is odd, then |A| ≤ 2|A′| − 1,

so |A′| ≥ |A|+1
2 . Now, x appears strictly more than |A′|/2 times in

|A′|, so it appears strictly more than |A′| − 1 times in A. We have

|A′| − 1 ≥ |A|−12 = b |A|2 c.
• If x is the majority element of A, then x is the majority element of A′.

The proof is similar to the previous part, for simplicity let’s assume
|A| is even. We observe that every time the algorithm deletes two
elements, this does not affect the majority element (that is, if x was
a majority element, it remains so). So we only need to focus on the
pairs for which A[2i] = A[2i+1]. Suppose there are a such pairs where
A[2i] = A[2i + 1] = x and b such pairs where A[2i] = A[2i + 1] 6= x.
Clearly, a > b (otherwise x is not a majority element). But x appears
a times in A′, and all other elements together appears at most b times.

5 Semi-sorted Matrix

We are given an n × n matrix A that contains integers. The matrix is “semi-
sorted” in the sense that it obeys the following rules:

• All rows are sorted in increasing order: A[i, j] ≤ A[i, j + 1].

• All columns are sorted in increasing order: A[i, j] ≤ A[i + 1, j].

We are given an integer x and are asked to either find i, j so that A[i, j] = x
or return that x is not in A. In the remainder, let A1, A2, A3, A4 be the four
(n/2)× (n/2) matrices which are the four quadrants of A

1. Consider the following recursive algorithm: if n ≤ 1, check if A[1, 1] =
x; otherwise, recurse on A1, A2, A3, A4. What is the complexity of this
algorithm? Does it work if the matrix is not sorted?

2. Improve on the complexity of the above algorithm by comparing x to
A[n/2, n/2] before recursing.

3. Consider the following algorithm: we perform binary search on each row
looking for x. What is its complexity?

4. Give a linear-time algorithm for this problem.

5. Show that no algorithm can solve this problem using a sub-linear number
of comparisons (you may assume that searching an unsorted array of size
n cannot be solved using a sub-linear number of comparisons).

Solution:

1. The algorithm gives T (n) = 4T (n/2) + O(1). Using the Master theorem
we have T (n) = O(n2). The algorithm does not use the fact that A is
semi-sorted, so it’s natural that its complexity is linear in the size of A (it
will check all elements).

5

2. We observe that all elements of A1 are smaller or equal to A[n/2, n/2]
and all elements of A4 are greater or equal to A[n/2, n/2]. So, if x <
A[n/2, n/2] we know that A4 does not need to be searched, while if x >
A[n/2, n/2], A1 does not need to be searched. We have T (n) = 3T (n/2)+
O(1), which gives T (n) = O(nlog 3).

3. This runs in time O(n log n).

4. This is trickier. Consider the following algorithm:

i=n , j=1
whi le i>=1 and j<=n do

i f A[i , j]==x then return i , j
i f A[i , j]>x then i=i−1
e l s e j=j+1

return NO

It is clear that this algorithm will terminate after O(n) steps. To see
correctness, we will prove that following invariant: for all i′, j′, if i′ > i or
j′ < j, then A[i′, j′] 6= x. In other words, A[i, j] is the current element,
and everything that is to the left or below it in the matrix cannot contain
x. This is clearly true in the beginning, since we start at the bottom-left
corner. Then, when we decrease i, we have A[i, j] > x, so all element in
row i which are to the right of A[i, j] cannot be x. Similarly, when we
increase j, we have A[i, j] < x, so all elements in column j above A[i, j]
cannot be x.

5. Let B be an unsorted array of n elements with minimum value a and
maximum value b. Suppose we are looking for x in B. We construct a
semi-sorted array A as follows: we put the elements of B in the secondary
diagonal from A[n, 1] to A[1, n]; we put value a− 1 on the upper-left half
of A; and value b + 1 on all positions of the bottom-right half.

Now, A is semi-sorted. If we have an algorithm that can find x in A using
o(n) comparisons, using the above procedure we can conclude if x belongs
in B with the same number of comparisons.

6 Squaring vs Multiplying

Let T (n) be the complexity of the best algorithm for multiplying two n-bit
integers (in class we saw that T (n) = O(nlog 3), but better algorithms exist).
Consider now an easier problem: we are given an n-bit integer a and are asked to
calculate a2. Let Q(n) be the complexity of the best algorithm for this problem.

1. Observe that Q(n) ≤ T (n).

2. Observe that Q(n) = Ω(n).

6

3. Show that Q(n) = Ω(T (n)). To show this assume for contradiction that
Q(n) = o(T (n)) and show how you could use a fast squaring algorithm to
improve the complexity of the best multiplication algorithm.

Solution:

1. One way to calculate a2 is to use the standard multiplication algorithm
to calculate a× a, obviously.

2. Every algorithm for squaring must read all the digits of the input.

3. Suppose that we have an algorithm for squaring n-bit integers running
in time Q(n) << T (n). We will show how to use this to multiply two
n-bit integers a, b in time Q(n) + O(n) = O(Q(n)) = o(T (n)). This
is a contradiction, since we assumed that T (n) is the best possible for
calculating products.

Given a, b we calculate (a + b) ((O(n) time), then x = (a + b)2, a2, b2

(O(Q(n))) time. We observe that (a + b)2 = a2 + b2 + 2ab. We therefore
calculate y = x − a2 − b2 (O(n)) time. Finally, we divide y by 2 (O(1))
time. The total time used is therefore O(Q(n)).

7

