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1 Blood tests

[MU 2.25] We want to perform a blood test to detect a virus. We have a test
with perfect accuracy: if we perform the test on a blood sample that contains
the virus (even in small amounts), the test always detects the virus; on the other
hand the test never gives false positives (i.e. if the virus is not there, it says
that it’s not there).

The only problem now is that the test is expensive. We have n people that
we wish to test, but running the test on each one costs too much. So we consider
the following scheme: we take a group of k people and construct a blood sample
by mixing the samples of these k people; then we test this mixed sample. If the
test does not detect the disease, all of the k people are healthy. If it does, we
must check each of them individually.

Assume that each person has probability p of having the virus, independently
of the others.

1. For a specific group of k people, what is the probability that the test on
their mixed sample will be positive?

2. What is the expected number of tests we will perform?

3. For which values of p is it better to forget about this scheme and simply
test everyone from the beginning?

Solution:

1. Let us calculate the probability that the test is negative, that is, all k
people are healthy. This is equal to Pr[k people healthy] = (1− p)k.

2. For a specific group of k people the expected number of test we will run
is 1 · (1 − p)k + (k + 1)(1 − (1 − p)k), because if one person is sick, we
will test everyone individually (so we will run k + 1 tests in total). This
expectation is 1 + k(1 − (1 − p)k). Since we have n/k groups the total
expectation is n/k + n(1− (1− p)k).
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3. From the calculation above we expect to perform n+n/k−n(1−p)k tests.
Since we could simply have performed n tests to begin with, this scheme
is more efficient when 1

k ≤ (1 − p)k. So we must have p ≤ 1 − 1
k1/k . For

example, for k = 2, we must have p ≤ 1− 1√
2
.

2 More random coins

[MU 3.22] We flip n random coins. Observe that there are m =
(
n
2

)
pairs of coin

flips in this experiment. For each pair of coin flips we define a random variable
Yi which is equal to 1 if the two flips of this pair gave different outcomes (so, Yi

is the exclusive or of the two random bits of the pair). Let Y =
∑m

i=1 Yi.

1. Show that Pr[Yi = 0] = Pr[Yi = 1] = 1/2.

2. Show that the Yi are not mutually independent.

3. Show that the Yi are pair-wise independent and satisfy the property E[YiYj ] =
E[Yi]E[Yj ].

4. Find V ar[Y ].

5. Use Chebyshev’s inequality to upper bound Pr[|Y − E[Y ]| ≥ n].

Solution:

1. Let (a, b) be the i-th pair. Then Pr[Yi = 0] = Pr[Xa = 0 ∧ Xb =
0] + Pr[Xa = 1 ∧Xb = 1] = 1/4 + 1/4 = 1/2.

2. Consider the pairs (a, b), (a, c), (b, c). (See also TD1)

3. It suffices to show that Pr[Yi = 1 ∧ Yj = 1] = 1/4. This is clear if the
i-th and j-th pair do not share coin flips. If i = (a, b) and j = (a, c) then
Pr[Yi = 1∧ Yj = 1] = 1

2Pr[Yi = 1∧ Yj = 1 | Xa = 1] + 1
2Pr[Yi = 1∧ Yj =

1 | Xa = 0] = 1
2Pr[Xb = 1 ∧Xc = 1] + 1

2Pr[Xb = 0 ∧Xc = 0] = 1/4.

4. We have E[Y ] = mE[Yi] = m/2. Now,

E[Y 2] = E[(

m∑
i=1

Yi)
2] =

=

m∑
i=1

E[Y 2
i ] +

m∑
i=1

∑
j 6=i

E[YiYj ] =

= m/2 + m(m− 1)/4 = m2/4 + m/4

Therefore, V ar[Y ] = E[Y 2] − (E[Y ])2 = m/4. Note that V ar[Y ] =∑m
i=1 V ar[Yi], which is logical since we proved that the Yi are pairwise

independent.
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5. With Chebyshev’s inequality, this probability is at most V ar[Y ]
n2 = m/4

n2 =
n(n−1)
8n2 ≤ 1/8.
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