
Algorithms M2 IF

Dynamic Programming

Michael Lampis

Fall 2019

Dynamic Programming vs Divide and Conquer

Algorithms M2 IF 2 / 18

Dynamic Programming

• DP is a general algorithmic technique for solving optimization

problems.

• Key idea: finding the optimal solution to the input instance can be

reduced to finding the optimal solution to some smaller instance(s).

• This can then be done with the same algorithm, until we arrive at trivial

instances of constant size.

Dynamic Programming vs Divide and Conquer

Algorithms M2 IF 2 / 18

Dynamic Programming

• DP is a general algorithmic technique for solving optimization

problems.

• Key idea: finding the optimal solution to the input instance can be

reduced to finding the optimal solution to some smaller instance(s).

• This can then be done with the same algorithm, until we arrive at trivial

instances of constant size.

So what is the difference with
Divide&Conquer?

An example: Fibonacci

Algorithms M2 IF 3 / 18

Recall the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

• F (n) = F (n− 1) + F (n− 2)

Recursive implementation:

i n t f i b o (i n t n){
i f (n<=2) return 1;

return f i b o (n−1)+ f i b o (n −2) ; }

Implementation with loop:

i n t f i b o (i n t n){
i n t a=1 , b=1 , c ;

while (n−−){
c=a+b ;

b=a ;

a=c ;

}
return a ; }

Fibonacci continued

Algorithms M2 IF 4 / 18

Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)

Fibonacci continued

Algorithms M2 IF 4 / 18

Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)
• Let’s be generous: say T (n) ≤ 2T (n− 2)

• ⇒ T (n) = Ω(1.4n)
• (Correct ratio is ≈ 1.618n ≈ F (n))

• Linear vs Exponential!

• What went wrong?

Fibonacci continued

Algorithms M2 IF 4 / 18

Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)
• Let’s be generous: say T (n) ≤ 2T (n− 2)

• ⇒ T (n) = Ω(1.4n)
• (Correct ratio is ≈ 1.618n ≈ F (n))

• Linear vs Exponential!

• What went wrong?

• The recursive algorithm solves the same sub-instances many times.

• Key idea of Dynamic Programming (difference with D&C)

Build solution bottom-up, store solutions to smaller
sub-problems so that they don’t need to be
recomputed.

Longest Increasing Subsequence

Longest Increasing Subsequence

Algorithms M2 IF 6 / 18

• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.

Longest Increasing Subsequence

Algorithms M2 IF 6 / 18

• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.

Example:

A = [2, 5, 3, 9, 1, 4, 7, 6]

• 2, 5, 9 is a valid solution

• 2, 3, 9, 7 is not (not increasing)

• 1, 2, 3 is not (not a subsequence)

Longest Increasing Subsequence

Algorithms M2 IF 6 / 18

• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.

Example:

A = [2, 5, 3, 9, 1, 4, 7, 6]

• 2, 5, 9 is a valid solution

• 2, 3, 9, 7 is not (not increasing)

• 1, 2, 3 is not (not a subsequence)

• 2, 3, 4, 6 is an optimal solution

Longest Increasing Subsequence

Algorithms M2 IF 6 / 18

• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.

Example:

A = [2, 5, 3, 9, 1, 4, 7, 6]

• 2, 5, 9 is a valid solution

• 2, 3, 9, 7 is not (not increasing)

• 1, 2, 3 is not (not a subsequence)

• 2, 3, 4, 6 is an optimal solution

Objective: a polynomial-time (in n) algorithm that computes the length of

the LIS.

Note: computing the length of the optimal solution is probably good enough. . .

Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]

Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]

• Therefore L(i) = maxj<i∧A[j]<A[i] L(j) + 1

Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]

• Therefore L(i) = maxj<i∧A[j]<A[i] L(j) + 1

A = [2, 5, 3, 9, 1, 4, 7, 6]

L(i) = [1, 2, 2, 3, 1, 3, 4, 4]

Correctness and DP implementation

Algorithms M2 IF 8 / 18

• Similar to Divide&Conquer:

• Finding recursive formula for L leads to an algorithm

• Also to a correctness proof by induction:

• Suppose that L(j) is correctly computed

• → then L(i) is correctly computed because we consider all

feasible j’s (subsequence must increase) and we pick the best

(exchange argument).

Correctness and DP implementation

Algorithms M2 IF 8 / 18

• Similar to Divide&Conquer:

• Finding recursive formula for L leads to an algorithm

• Also to a correctness proof by induction:

• Suppose that L(j) is correctly computed

• → then L(i) is correctly computed because we consider all

feasible j’s (subsequence must increase) and we pick the best

(exchange argument).

• DP: we do not implement this with recursion!

• Would take exponential time for L(n) !!

• We construct a table L(i) bottom-up (starting from smaller values)

• Running time O(n2)

• O(n) to find max, repeated n times

Correctness and DP implementation

Algorithms M2 IF 8 / 18

• Similar to Divide&Conquer:

• Finding recursive formula for L leads to an algorithm

• Also to a correctness proof by induction:

• Suppose that L(j) is correctly computed

• → then L(i) is correctly computed because we consider all

feasible j’s (subsequence must increase) and we pick the best

(exchange argument).

• DP: we do not implement this with recursion!

• Would take exponential time for L(n) !!

• We construct a table L(i) bottom-up (starting from smaller values)

• Running time O(n2)

• O(n) to find max, repeated n times

• From DP table we can also deduce the actual LIS.

• Can use secondary table L′(i) which stores that indices j used to

maximize L(i)

Subset Sum

Knapsack

Algorithms M2 IF 10 / 18

Story:

• Your friend gave you a 100$ gift card for Christmas. You can use it in

an online store.

• The card cannot be used in combination with other payment methods.

• The items in the store have the following values:

[14, 17, 19, 23, 28, 31, 45, 47]

• You want to select a set of items that

• Has maximum total value.

• Has total cost at most 100$.

Knapsack

Algorithms M2 IF 10 / 18

Story:

• Your friend gave you a 100$ gift card for Christmas. You can use it in

an online store.

• The card cannot be used in combination with other payment methods.

• The items in the store have the following values:

[14, 17, 19, 23, 28, 31, 45, 47]

• You want to select a set of items that

• Has maximum total value.

• Has total cost at most 100$.

Example:

• 45 + 47 = 92 (Greedy algorithm, buy most expensive feasible item)

• 19 + 31 + 47 = 97
• 23 + 28 + 47 = 98

Knapsack

Algorithms M2 IF 11 / 18

• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

Knapsack

Algorithms M2 IF 11 / 18

• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

• Break down the problem into sub-problems.

• Let P (i,W) be the maximum value I can achieve if items A[1, . . . , i]
are available and my budget is W .

• I want to know P (n,B)
• P (i, 0) is easy, P (0,W) is easy.

Knapsack

Algorithms M2 IF 11 / 18

• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

• Break down the problem into sub-problems.

• Let P (i,W) be the maximum value I can achieve if items A[1, . . . , i]
are available and my budget is W .

• I want to know P (n,B)
• P (i, 0) is easy, P (0,W) is easy.

P (n,W) = max{P (n− 1,W), (P (n− 1,W −A[n]) +A[n])}

Knapsack

Algorithms M2 IF 11 / 18

• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

• Break down the problem into sub-problems.

• Let P (i,W) be the maximum value I can achieve if items A[1, . . . , i]
are available and my budget is W .

• I want to know P (n,B)
• P (i, 0) is easy, P (0,W) is easy.

P (n,W) = max{P (n− 1,W), (P (n− 1,W −A[n]) +A[n])}

Explanation:

• I can either

• Ignore last element

• Or take it, gain A[n] in profit, but decrease budget accordingly.

• (Note: clearly, if A[n] > W only first choice is feasible)

Knapsack DP

Algorithms M2 IF 12 / 18

• Implementation: construct an n×B matrix to represent P (i,W).
• Use formula of previous slide to fill each row after the previous row has

been filled.

• Complexity: O(nB). Polynomial?

• Not quite! Since B is written in binary, it could be a huge number!

We call this type of complexity pseudo-polynomial: polynomial if

all values are small.

Knapsack DP

Algorithms M2 IF 12 / 18

• Implementation: construct an n×B matrix to represent P (i,W).
• Use formula of previous slide to fill each row after the previous row has

been filled.

• Complexity: O(nB). Polynomial?

• Not quite! Since B is written in binary, it could be a huge number!

We call this type of complexity pseudo-polynomial: polynomial if

all values are small.

Example:

A = [3, 4, 5, 6], B = 12

Item Budget – Profit

(3) 0 0 0 3 3 3 3 3 3 3 3 3

(4) 0 0 0 3 4 4 4 7 7 7 7 7

(5) 0 0 0 3 4 5 5 7 8 9 9 12

(6) 0 0 0 3 4 5 6 7 8 9 11 12

Matrix Chain Multiplication

Matrix Multiplication (again)

Algorithms M2 IF 14 / 18

• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.

Matrix Multiplication (again)

Algorithms M2 IF 14 / 18

• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.

• Important: this is a meta-problem. We want to plan how to perform the

multiplication.

• Assumption: multiplying an a× b matrix with a b× c matrix takes time

O(abc).
• Reminder: Multiplication is associative ABC = (AB)C = A(BC).

Matrix Multiplication (again)

Algorithms M2 IF 14 / 18

• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.

• Important: this is a meta-problem. We want to plan how to perform the

multiplication.

• Assumption: multiplying an a× b matrix with a b× c matrix takes time

O(abc).
• Reminder: Multiplication is associative ABC = (AB)C = A(BC).

Example:

A1 : 2× 100

A2 : 100× 2

A3 : 2× 2

Best order?

Matrix Multiplication

Algorithms M2 IF 15 / 18

Another example (from [DPV]):

A1 : 50× 20

A2 : 20× 1

A3 : 1× 10

A4 : 10× 100

Possible solutions:
Order Cost Analysis Cost

A1 × ((A2 ×A3)×A4) 20 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200
(A1 × (A2 ×A3))×A4 20 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200
(A1 ×A2)× (A3 ×A4) 50 · 20 + 10 · 100 + 50 · 100 7, 000

Note: greedy algorithm (make easy multiplication first), is not optimal.

Dynamic Programming solution

Algorithms M2 IF 16 / 18

Main idea: define C[i, j] for 1 ≤ i < j ≤ n as the minimum cost of

multiplying matrices Ai, . . . , Aj .

• Base case: C[i, i] = 0, C[i, i+ 1] = ri−1riri+1.

• Want to know: C[1, n].

• What is a “smaller” subproblem?

Dynamic Programming solution

Algorithms M2 IF 16 / 18

Main idea: define C[i, j] for 1 ≤ i < j ≤ n as the minimum cost of

multiplying matrices Ai, . . . , Aj .

• Base case: C[i, i] = 0, C[i, i+ 1] = ri−1riri+1.

• Want to know: C[1, n].

• What is a “smaller” subproblem?

• We will calculate C[i, j] in order of increasing (j − i).

C[i, j] = min
k:i<k<j

C[i, k] + C[k + 1, j] + ri−1rkrj

Dynamic Programming solution

Algorithms M2 IF 16 / 18

Main idea: define C[i, j] for 1 ≤ i < j ≤ n as the minimum cost of

multiplying matrices Ai, . . . , Aj .

• Base case: C[i, i] = 0, C[i, i+ 1] = ri−1riri+1.

• Want to know: C[1, n].

• What is a “smaller” subproblem?

• We will calculate C[i, j] in order of increasing (j − i).

C[i, j] = min
k:i<k<j

C[i, k] + C[k + 1, j] + ri−1rkrj

• Explanation: there will be several multiplications that will be done for

the matrices Ai, . . . , Aj . The last multiplication will involve the product

of matrices Ai, . . . , Ak, with the product of matrices Ak+1, . . . , Aj .

• If we are given k the best way to do this is to

• Optimally do Ai . . . Ak

• Optimally do Ak+1 . . . Aj

• Do the last multiplication (fixed cost)

• We pick the best k

Complexity

Algorithms M2 IF 17 / 18

• We need to fill up the C[i, j] table

• Table has O(n2) elements.

• For each element we spend O(n) time.

• ⇒ algorithm to find optimal planning takes O(n3).

Complexity

Algorithms M2 IF 17 / 18

• We need to fill up the C[i, j] table

• Table has O(n2) elements.

• For each element we spend O(n) time.

• ⇒ algorithm to find optimal planning takes O(n3).

• As before, algorithm can be modified to output the optimal planning

instead of just its cost.

Summary

Algorithms M2 IF 18 / 18

Important lessons to remember.

• Induction/Recursion are powerful techniques

• Solve problem by solving sub-problems.

• Divide&Conquer:

• Implement with recursion

• Sub-problems usually much smaller

• Analyze running time with Master Theorem/recurrence relations

• Dynamic Programming:

• More efficient/powerful by making more clever us of memory.

• Avoid recomputing the same subproblems.

• Running time usually close to memory usage.

	Dynamic Programming vs Divide and Conquer
	An example: Fibonacci
	Fibonacci continued
	Longest Increasing Subsequence
	Longest Increasing Subsequence
	Longest Increasing Subsequence
	Correctness and DP implementation

	Subset Sum
	Knapsack
	Knapsack
	Knapsack DP

	Matrix Chain Multiplication
	Matrix Multiplication (again)
	Matrix Multiplication
	Dynamic Programming solution
	Complexity
	Summary

