Algorithms M2 IFDynamic Programming

Michael Lampis

Fall 2019

Dynamic Programming

- \bullet DP is a general algorithmic technique for solving optimization problems.
- \bullet Key idea: finding the optimal solution to the input instance can bereduced to finding the optimal solution to some smaller instance(s).
- \bullet • This can then be done with the same algorithm, until we arrive at trivial instances of constant size.

Dynamic Programming

- \bullet DP is ^a general algorithmic technique for solving optimizationproblems.
- \bullet Key idea: finding the optimal solution to the input instance can bereduced to finding the optimal solution to some smaller instance(s).
- \bullet • This can then be done with the same algorithm, until we arrive at trivial instances of constant size.

So what is the difference withDivide&Conquer?

Recall the Fibonacci sequence: $1, 1, 2, 3, 5, 8, 13, 21, \ldots$

$$
\bullet \quad F(n) = F(n-1) + F(n-2)
$$

Recursive implementation:

```
i n t f i b o ( i n t n ){
i f ( n<=2) return 1;
          return fibo(n−1)+ fibo(n−2); }
```
Implementation with loop:

```
Algorithms M2 IF \blacksquare i n t f i b o ( i n t n ){
i n t a=1 , b=1 , c ;
                                        while ( n− −){
                                                                      c=a+b;
                                                                      b=a;
                                                                      a = c;
                                         }return a ; }
```
Fibonacci continued

Let's compare the complexities of the two algorithms:

- \bullet • Second algorithm runs in $O(n)$. (easy to see)
- \bullet First algorithm has complexity $T(n) \leq T(n-1) + T(n-2)$

Fibonacci continued

Let's compare the complexities of the two algorithms:

- \bullet • Second algorithm runs in $O(n)$. (easy to see)
- \bullet First algorithm has complexity $T(n) \leq T(n-1) + T(n-2)$
- \bullet • Let's be generous: say $T(n) \leq 2T(n-2)$
	- $\bullet \quad \Rightarrow T(n) = \Omega(1.4^n)$

	 (Correct ratio is \sim
	- (Correct ratio is $\approx 1.618^n \approx F(n)$)
- \bullet Linear vs Exponential!
- \bullet What went wrong?

Fibonacci continued

Let's compare the complexities of the two algorithms:

- \bullet • Second algorithm runs in $O(n)$. (easy to see)
- \bullet First algorithm has complexity $T(n) \leq T(n-1) + T(n-2)$
- \bullet • Let's be generous: say $T(n) \leq 2T(n-2)$
	- $\bullet \quad \Rightarrow T(n) = \Omega(1.4^n)$

	 (Correct ratio is \sim
	- (Correct ratio is $\approx 1.618^n \approx F(n)$)
- \bullet Linear vs Exponential!
- \bullet What went wrong?
- The recursive algorithm solves the same sub-instances many times. \bullet
- \bullet **Key idea** of Dynamic Programming (difference with D&C) Build solution bottom-up, store solutions to smaller sub-problems so that they don't need to berecomputed.

- \bullet • Input: an array A of n integers.
- \bullet • Output: a subsequence (not necessarily consecutive) of A that is increasing and has maximum length.

- \bullet • Input: an array A of n integers.
- \bullet • Output: a subsequence (not necessarily consecutive) of A that is increasing and has maximum length.

Example:

$$
A=[2,5,3,9,1,4,7,6]
$$

- \bullet $2, 5, 9$ is a valid solution
- $\left(2,3,9,7\text{ is not (not increasing)}\right)$ \bullet
- \bullet $1, 2, 3$ is not (not a subsequence)

- \bullet • Input: an array A of n integers.
- \bullet • Output: a subsequence (not necessarily consecutive) of A that is increasing and has maximum length.

Example:

$$
A=[2,5,3,9,1,4,7,6]
$$

- \bullet $2, 5, 9$ is a valid solution
- $\left(2,3,9,7\text{ is not (not increasing)}\right)$ \bullet
- \bullet $1, 2, 3$ is not (not a subsequence)
- • $2, 3, 4, 6$ is an optimal solution

- \bullet • Input: an array A of n integers.
- \bullet • Output: a subsequence (not necessarily consecutive) of A that is increasing and has maximum length.

Example:

$$
A=[2,5,3,9,1,4,7,6]
$$

- \bullet $2, 5, 9$ is a valid solution
- $\left(2,3,9,7\text{ is not (not increasing)}\right)$ \bullet
- \bullet $1, 2, 3$ is not (not a subsequence)
- • $2, 3, 4, 6$ is an optimal solution

Objective: a polynomial-time (in $n)$ algorithm that computes the length of the LIS.

Note: computing the length of the optimal solution is probably good enough. . .

- \bullet • Define $L(i)$: length of LIS of $A[1\ldots i]$ which contains $A[i]$.
	- $L(0) = 0, L(1) = 1$ (base case)
	- $L(n) = \text{OPT}$ (what we want to know)

- \bullet • Define $L(i)$: length of LIS of $A[1\ldots i]$ which contains $A[i]$.
	- $L(0) = 0, L(1) = 1$ (base case)
	- $L(n) = \text{OPT}$ (what we want to know)
	- \mathbf{r} $\bullet\quad L(i) = 1 + L(j),$ where j is the position of the second from the end \sim 1 element of the LIS.
		- \bullet $j < i$
		- \bullet $A[j] < A[i]$

- \bullet • Define $L(i)$: length of LIS of $A[1\ldots i]$ which contains $A[i]$.
	- $L(0) = 0, L(1) = 1$ (base case)
	- $L(n) = \text{OPT}$ (what we want to know)
	- \mathbf{r} $\bullet\quad L(i) = 1 + L(j),$ where j is the position of the second from the end element of the LIS.
		- \bullet $j < i$
		- \bullet $A[j] < A[i]$
	- Therefore $L(i) = \max_{j < i \wedge A[j] < A[i]} L(j) + 1$

- \bullet • Define $L(i)$: length of LIS of $A[1\ldots i]$ which contains $A[i]$.
	- $L(0) = 0, L(1) = 1$ (base case)
	- $L(n) = \text{OPT}$ (what we want to know)
	- \mathbf{r} $\bullet\quad L(i) = 1 + L(j),$ where j is the position of the second from the end \sim 1 element of the LIS.
		- \bullet $j < i$
		- \bullet $A[j] < A[i]$
	- Therefore $L(i) = \max_{j < i \wedge A[j] < A[i]} L(j) + 1$

$$
A = [2, 5, 3, 9, 1, 4, 7, 6]
$$

$$
L(i) = [1, 2, 2, 3, 1, 3, 4, 4]
$$

- \bullet Similar to Divide&Conquer:
	- •• Finding recursive formula for L leads to an algorithm
	- Also to ^a correctness proof by induction:
		- •• Suppose that $L(j)$ is correctly computed
		- \rightarrow then $L(i)$ is correctly computed because we consider all
feasible *i's (subsequence must increase)* and we nick the b \bullet feasible j 's (subsequence must increase) and we pick the best (exchange argument).
- \bullet Similar to Divide&Conquer:
	- •• Finding recursive formula for L leads to an algorithm
	- Also to ^a correctness proof by induction:
		- •• Suppose that $L(j)$ is correctly computed
		- \rightarrow then $L(i)$ is correctly computed because we consider all
feasible *i's (subsequence must increase)* and we nick the b •feasible j 's (subsequence must increase) and we pick the best (exchange argument).
- \bullet DP: we **do not** implement this with recursion!
	- •• Would take exponential time for $L(n)$!!
- \bullet • We construct a table $L(i)$ bottom-up (starting from smaller values)
- Running time $O(n^2)$ \bullet 2 $^{2})$
	- $\bullet\quad O(n)$ to find max, repeated n times
- \bullet Similar to Divide&Conquer:
	- •• Finding recursive formula for L leads to an algorithm
	- Also to ^a correctness proof by induction:
		- •• Suppose that $L(j)$ is correctly computed
		- \rightarrow then $L(i)$ is correctly computed because we consider all
feasible *i's (subsequence must increase)* and we nick the b •feasible j 's (subsequence must increase) and we pick the best (exchange argument).
- \bullet DP: we **do not** implement this with recursion!
	- Would take exponential time for $L(n)$!!
- \bullet • We construct a table $L(i)$ bottom-up (starting from smaller values)
- Running time $O(n^2)$ •2 $^{2})$
	- $\bullet\quad O(n)$ to find max, repeated n times
- \bullet From DP table we can also deduce the actual LIS.
- Algorithms M2 IF \sim 8 / 18 \bullet • Can use secondary table $L'(i)$ which stores that indices j used to maximize $L \$ $\left($ $\it i$ $\left(i\right)$

Subset Sum

Story:

- \bullet Your friend gave you ^a 100\$ gift card for Christmas. You can use it inan online store.
- \bullet The card cannot be used in combination with other payment methods.
- \bullet The items in the store have the following values:

 $\left[14, 17, 19, 23, 28, 31, 45, 47\right]$

- \bullet You want to select ^a set of items that
	- Has maximum total value.
	- \bullet Has total cost at most 100\$.

Story:

- \bullet Your friend gave you ^a 100\$ gift card for Christmas. You can use it inan online store.
- \bullet The card cannot be used in combination with other payment methods.
- \bullet The items in the store have the following values:

 $\left[14, 17, 19, 23, 28, 31, 45, 47\right]$

- \bullet You want to select ^a set of items that
	- Has maximum total value.
	- \bullet Has total cost at most 100\$.

Example:

- $45 + 47 = 92$ (Greedy algorithm, buy most expensive feasible item)
- $19 + 31 + 47 = 97$
- $23 + 28 + 47 = 98$

- \bullet Input: array of values A, budget B.
- \bullet • Output: subset of values with sum $\leq B$ such that sum is maximized.

- \bullet Input: array of values A , budget B .
- •• Output: subset of values with sum $\leq B$ such that sum is maximized.
- \bullet Break down the problem into sub-problems.
- •Let $P(i, W)$ be the maximum value I can achieve if items $A[1, \ldots, i]$ are available and my budget is W_{\cdot}
	- \bullet • I want to know $P(n, B)$
	- $\bullet\quad P(i,0)$ is easy, $P(0,W)$ is easy.

- \bullet Input: array of values A , budget B .
- •• Output: subset of values with sum $\leq B$ such that sum is maximized.
- \bullet Break down the problem into sub-problems.
- \bullet Let $P(i, W)$ be the maximum value I can achieve if items $A[1, \ldots, i]$ are available and my budget is W_{\cdot}
	- \bullet • I want to know $P(n, B)$
	- $\bullet\quad P(i,0)$ is easy, $P(0,W)$ is easy.

 $P(n, W) = \max\{P(n - 1, W), (P(n - 1, W - A[n]) + A[n])\}$

- \bullet Input: array of values A , budget B .
- •• Output: subset of values with sum $\leq B$ such that sum is maximized.
- \bullet Break down the problem into sub-problems.
- \bullet Let $P(i, W)$ be the maximum value I can achieve if items $A[1, \ldots, i]$ are available and my budget is W_{\cdot}
	- I want to know $P(n, B)$
	- $\bullet\quad P(i,0)$ is easy, $P(0,W)$ is easy.

 $P(n, W) = \max\{P(n - 1, W), (P(n - 1, W - A[n]) + A[n])\}$

Explanation:

- \bullet ^I can either
	- Ignore last element
	- \bullet • Or take it, gain $A[n]$ in profit, but decrease budget accordingly.
	- •• (Note: clearly, if $A[n] > W$ only first choice is feasible)

Knapsack DP

- \bullet • Implementation: construct an $n \times B$ matrix to represent $P(i, W)$.
- \bullet Use formula of previous slide to fill each row after the previous row has been filled.
- \bullet Complexity: $O(nB)$. Polynomial?
	- \bullet • Not quite! Since B is written in binary, it could be a huge number! We call this type of complexity **pseudo-polynomial**: polynomial if all values are small.

Knapsack DP

- \bullet • Implementation: construct an $n \times B$ matrix to represent $P(i, W)$.
- \bullet Use formula of previous slide to fill each row after the previous row has been filled.
- \bullet Complexity: $O(nB)$. Polynomial?
	- \bullet • Not quite! Since B is written in binary, it could be a huge number! We call this type of complexity **pseudo-polynomial**: polynomial if all values are small.

Example:

$$
A = [3, 4, 5, 6], B = 12
$$

Algorithms M2 IF 2012 18

Matrix Chain Multiplication

Matrix Multiplication (again)

- \bullet • Input: We are given n matrices A_1, A_2, \ldots, A_n with dimensions $r_0 \times r_1, r_1 \times r_2, \ldots, r_{n-1} \times r_n$
Output: Optimal way to agree
- \bullet • Output: Optimal way to compute $A_1 \times A_2 \times \ldots \times A_n$.

Matrix Multiplication (again)

- \bullet • Input: We are given n matrices A_1, A_2, \ldots, A_n with dimensions $r_0 \times r_1, r_1 \times r_2, \ldots, r_{n-1} \times r_n$
Output: Optimal way to agree
- \bullet • Output: Optimal way to compute $A_1 \times A_2 \times \ldots \times A_n$.
- \bullet • Important: this is a meta-problem. We want to **plan** how to perform the multiplication.
- \bullet • Assumption: multiplying an $a \times b$ matrix with a $b \times c$ matrix takes time $O(abc)$.
- \bullet • Reminder: Multiplication is associative $ABC = (AB)C = A(BC)$.

Matrix Multiplication (again)

- \bullet • Input: We are given n matrices A_1, A_2, \ldots, A_n with dimensions $r_0 \times r_1, r_1 \times r_2, \ldots, r_{n-1} \times r_n$
Output: Optimal way to agree
- \bullet • Output: Optimal way to compute $A_1 \times A_2 \times \ldots \times A_n$.
- \bullet • Important: this is a meta-problem. We want to **plan** how to perform the multiplication.
- \bullet • Assumption: multiplying an $a \times b$ matrix with a $b \times c$ matrix takes time $O(abc)$.
- \bullet • Reminder: Multiplication is associative $ABC = (AB)C = A(BC)$.

Example:

 A_1 : 2×100 A_2 : 100×2 $A_3 : 2 \times 2$

Best order?

Algorithms M2 IF 14 / 18

Another example (from [DPV]):

 A_1 : 50×20 A_2 : 20×1 A_3 : 1×10 A_4 : 10×100

Possible solutions:

Note: greedy algorithm (make easy multiplication first), is **not** optimal.

Dynamic Programming solution

Main idea: define $C[i,j]$ for $1\leq i < j \leq n$ as the minimum cost of multiplying matrices $A_i, \ldots, A_j.$

- •• Base case: $C[i, i] = 0, C[i, i + 1] = r_{i-1}r_ir_{i+1}$.
- \bullet • Want to know: $C[1,n]$.
- \bullet What is ^a "smaller" subproblem?

Dynamic Programming solution

Main idea: define $C[i,j]$ for $1\leq i < j \leq n$ as the minimum cost of multiplying matrices $A_i, \ldots, A_j.$

- \bullet • Base case: $C[i, i] = 0, C[i, i + 1] = r_{i-1}r_ir_{i+1}$.
- \bullet • Want to know: $C[1,n]$.
- \bullet What is ^a "smaller" subproblem?
- We will calculate $C[i, j]$ in order of increasing $(j$ \bullet $i).$

$$
C[i,j] = \min_{k:i < k < j} C[i,k] + C[k+1,j] + r_{i-1}r_kr_j
$$

Dynamic Programming solution

Main idea: define $C[i,j]$ for $1\leq i < j \leq n$ as the minimum cost of multiplying matrices $A_i, \ldots, A_j.$

- •• Base case: $C[i, i] = 0, C[i, i + 1] = r_{i-1}r_ir_{i+1}$.
- •• Want to know: $C[1,n]$.
- \bullet What is ^a "smaller" subproblem?
- We will calculate $C[i, j]$ in order of increasing $(j$ \bullet $i).$

$$
C[i,j] = \min_{k:i < k < j} C[i,k] + C[k+1,j] + r_{i-1}r_kr_j
$$

- \bullet Explanation: there will be several multiplications that will be done for the matrices $A_i, \ldots, A_j.$ The last multiplication will involve the product of matrices A_i, \ldots, A_k , with the product of matrices $A_{k+1}, \ldots, A_j.$
- If we are given k the best way to do this is to \bullet
	- •• Optimally do $A_i \dots A_k$
	- Optimally do $A_{k+1} \ldots A_j$
	- Do the last multiplication (fixed cost)

Algorithms M2 IF k the best k and the set of the set

Complexity

- \bullet • We need to fill up the $C[i, j]$ table
- •Table has $O(n^2)$ elements.
- \bullet • For each element we spend $O(n)$ time.
- \bullet • \Rightarrow algorithm to find optimal planning takes $O(n^3)$.

Complexity

- \bullet • We need to fill up the $C[i, j]$ table
- \bullet Table has $O(n^2)$ elements.
- \bullet • For each element we spend $O(n)$ time.
- \bullet • \Rightarrow algorithm to find optimal planning takes $O(n^3)$.
- \bullet As before, algorithm can be modified to output the optimal planninginstead of just its cost.

Summary

Important lessons to remember.

- \bullet Induction/Recursion are powerful techniques
	- •Solve problem by solving sub-problems.
- \bullet Divide&Conquer:
	- •Implement with recursion
	- Sub-problems usually much smaller \bullet
	- •Analyze running time with Master Theorem/recurrence relations
- \bullet Dynamic Programming:
	- •More efficient/powerful by making more clever us of memory.
	- •Avoid recomputing the same subproblems.
- Algorithms M2 IF 18 / 18•Running time usually close to memory usage.