Algorithms M2 IFMore on Randomized Algorithms

Michael Lampis

Fall 2019

Review of Probability Theory

- •A "universe" of events Ω
- A collection of **events** \mathcal{E} such that for $E \in \mathcal{E}$ we have $E \subseteq \Omega$ \bullet
- \bullet • A **probability** function $Pr : \mathcal{E} \rightarrow [0, 1]$

- \bullet A "universe" of events Ω
- A collection of **events** \mathcal{E} such that for $E \in \mathcal{E}$ we have $E \subseteq \Omega$ \bullet
- \bullet A **probability** function $Pr : \mathcal{E} \rightarrow [0, 1]$

Example:

- $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- The following could be events in $\mathcal E$
	- $E_3 = \{3\}$
	- $E_{\text{low}} = \{1, 2\}$
• $E_{\text{old}} = \{1, 3\}$
	- $E_{\text{odd}} = \{1, 3, 5\}$
- The natural (uniform) probability function would set
	- $Pr[E_3] = 1/6$
	- $Pr[E_{\text{low}}] = 1/3$
	- $Pr[E_{\text{odd}}] = 1/2$

- \bullet A "universe" of events Ω
- A collection of **events** \mathcal{E} such that for $E \in \mathcal{E}$ we have $E \subseteq \Omega$ \bullet
- \bullet A **probability** function $Pr : \mathcal{E} \rightarrow [0, 1]$

Example (infinite space):

- $\Omega = [0, 1].$
- The following could be events in $\mathcal E$
	- $E_3 = \{1/3\}$
	- $E_{\text{low}} = [0, 1/2]$
• $E_{\text{low}} = [0, 1/2]$
	- $E_{\text{edge}} = [0, 1/4] \cup [3/4, 1]$
- \bullet The natural (uniform) probability function would set
	- $Pr[E_3] = 0$ (why?)
	- $Pr[E_{\text{low}}] = 1/2$
	- $Pr[E_{edge}] = 1/2$

- \bullet A "universe" of events Ω
- A collection of **events** \mathcal{E} such that for $E \in \mathcal{E}$ we have $E \subseteq \Omega$ \bullet
- \bullet • A **probability** function $Pr : \mathcal{E} \rightarrow [0, 1]$

A **valid** probability measure satisfies:

- $Pr[\Omega] = 1$
- \bullet If $E_1, E_2, \ldots, E_n \in \mathcal{E}$ and for all $i \neq j, E_i \cap E_j = \emptyset$ (mutually disjoint events), then

$$
Pr[\cup_{i=1}^{n} E_i] = \sum_{i=1}^{n} Pr[E_i]
$$

These are called the Kolmogorov probability axioms.

 \bullet When Ω is finite, the distribution which sets for each $i \in \Omega$ $Pr[\{i\}] = \frac{1}{|\Omega|}$ is called the **uniform distribution**.

Probability Basics

Remember: probabilities are **sets** deep down.

- \bullet $Pr[\emptyset] = 0$
- \bullet • If $E_1 ⊆ E_2$ then $Pr[E_1] \leq Pr[E_2]$
 E_1 is the position of E_2
- \bullet • $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$
	- •Proof?

The last principle can be generalized to give the so-calledinclusion-exclusion formula:

$$
Pr[A_1 \cup A_2 \cup \ldots A_n] = \sum_{i=1}^n Pr[A_i] - \sum_{i_1 \neq i_2 = 1}^n Pr[A_{i_1} \cap A_{i_2}] + \sum_{i_1 \neq i_2 \neq i_3 = 1}^n Pr[A_{i_1} \cap A_{i_2} \cap A_{i_3}] - \ldots
$$

A very basic property that follows for **any** collection of events:

$$
Pr[\cup_{i=1}^{n} A_i] \le \sum_{i=1}^{n} Pr[A_i]
$$

- \bullet This is called the **union bound**.
- \bullet • We often use this bound when A_i are "bad" events, and we want to show that the probability of one of them happening is small.
	- \bullet Main interest: it might be hard to calculate exactly $Pr[\cup A_i]$. This allows us to upper bound it without worrying about how each event affects the others.
- \bullet The bound becomes an equality only when events are disjoint (mutually exclusive).

- \bullet Informally: ^a set of events is **independent**, if knowing that onehappened gives us no additional information about the others.
- \bullet Formally: A, B independent if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- \bullet Formally: A_1, \ldots, A_n independent if for any $S \subseteq \{1, \ldots n\}$ we have $Pr[\bigcap_{i \in S} A_i] = \prod_{i \in S} Pr[A_i].$

- • Informally: ^a set of events is **independent**, if knowing that onehappened gives us no additional information about the others.
- \bullet Formally: A, B independent if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- \bullet Formally: A_1, \ldots, A_n independent if for any $S \subseteq \{1, \ldots n\}$ we have $Pr[\bigcap_{i \in S} A_i] = \prod_{i \in S} Pr[A_i].$
	- \bullet What is the difference between independence for two and for morethan two events?
- \bullet **• Pair-wise independence**: A_1, \ldots, A_n are pair-wise independent iff for any $i \neq j \in \{1, \ldots, n\}$ we have $Pr[A_i \cap A_j] = Pr[A_i] \cdot Pr[A_j].$

- • Informally: ^a set of events is **independent**, if knowing that onehappened gives us no additional information about the others.
- \bullet Formally: A, B independent if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- \bullet Formally: A_1, \ldots, A_n independent if for any $S \subseteq \{1, \ldots n\}$ we have $Pr[\bigcap_{i \in S} A_i] = \prod_{i \in S} Pr[A_i].$
	- \bullet What is the difference between independence for two and for morethan two events?
- \bullet **• Pair-wise independence**: A_1, \ldots, A_n are pair-wise independent iff for any $i \neq j \in \{1, \ldots, n\}$ we have $Pr[A_i \cap A_j] = Pr[A_i] \cdot Pr[A_j].$

Example: roll ^a die

- \bullet ^A: result is odd
- \bullet B: result is divisible by three \bullet
- \bullet • $C:$ result is ≥ 4

- • Informally: ^a set of events is **independent**, if knowing that onehappened gives us no additional information about the others.
- \bullet Formally: A, B independent if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- \bullet Formally: A_1, \ldots, A_n independent if for any $S \subseteq \{1, \ldots n\}$ we have $Pr[\bigcap_{i \in S} A_i] = \prod_{i \in S} Pr[A_i].$
	- \bullet What is the difference between independence for two and for morethan two events?
- \bullet **• Pair-wise independence**: A_1, \ldots, A_n are pair-wise independent iff for any $i \neq j \in \{1, \ldots, n\}$ we have $Pr[A_i \cap A_j] = Pr[A_i] \cdot Pr[A_j].$

Example: roll ^a die

- \bullet ^A: result is odd
- \bullet B: result is divisible by three •
- \bullet • $C:$ result is $≥$ 4
- \bullet • A, B are independent; A, C are not; B, C are independent.

Conditional Probabilities

- \bullet • To define independence we asked "Does A tell us anything about B ?"
- \bullet This corresponds to the notion of **conditional probabilities**:
- \bullet Definition:

$$
Pr[A \mid B] = \frac{Pr[A \cap B]}{Pr[B]}
$$

- •• In words: the probability of A , given B .
- \bullet Note: only makes sense if $Pr[B] \neq 0$.

Conditional Probabilities

- \bullet • To define independence we asked "Does A tell us anything about B ?"
- \bullet This corresponds to the notion of **conditional probabilities**:
- \bullet Definition:

$$
Pr[A \mid B] = \frac{Pr[A \cap B]}{Pr[B]}
$$

- \bullet • In words: the probability of A , given B .
- \bullet Note: only makes sense if $Pr[B] \neq 0$.
- \bullet • So, if A, B independent, then $Pr[A \mid B] = Pr[A]$.
	- •Makes sense!

Conditional Probabilities

- \bullet • To define independence we asked "Does A tell us anything about B ?"
- \bullet This corresponds to the notion of **conditional probabilities**:
- \bullet Definition:

$$
Pr[A \mid B] = \frac{Pr[A \cap B]}{Pr[B]}
$$

- \bullet • In words: the probability of A , given B .
- \bullet Note: only makes sense if $Pr[B] \neq 0$.
- \bullet • So, if A, B independent, then $Pr[A \mid B] = Pr[A]$.
	- Makes sense!
- \bullet • Important not to confuse $Pr[A \mid B]$ with $Pr[B \mid A]$.
	- $Pr[I \text{ sneeze} | I \text{ have a cold}] \neq Pr[I \text{ have a cold} | I \text{ sneeze}]$
- $Pr[A | B]Pr[B] = Pr[B | A]Pr[A] = Pr[A \cap B].$

Useful Tools From Probability Theory

Expectation

- \bullet **•** Random variable: a function $X : \Omega \to \mathbb{R}$.
• Informally: a variable whose value dener
- \bullet Informally: ^a variable whose value depends on the outcome of ^arandom event.

Expectation

- \bullet **•** Random variable: a function $X : \Omega \to \mathbb{R}$.
• Informally: a variable whose value dener
- \bullet Informally: ^a variable whose value depends on the outcome of ^arandom event.

Example: we roll ^a die

- If X is the number shown, X is a random variable that takes values in $[1, 2]$ \bullet $\{1, \ldots, 6\}.$
- \bullet • $Pr[X = 1] = \frac{1}{6}$
- \bullet If we roll three dice, let Y be (a r.v. equal to) their sum
- \bullet • Y takes values in $\{3, \ldots, 18\}$
- \bullet • $Pr[Y = 3] = \frac{1}{6^3}$ (why?)

Expectation

- \bullet **•** Random variable: a function $X : \Omega \to \mathbb{R}$.
• Informally: a variable whose value dener
- \bullet Informally: ^a variable whose value depends on the outcome of ^arandom event.

Example: we roll ^a die

- If X is the number shown, X is a random variable that takes values in $[1, 2]$ \bullet $\{1, \ldots, 6\}.$
- \bullet • $Pr[X = 1] = \frac{1}{6}$
- \bullet If we roll three dice, let Y be (a r.v. equal to) their sum
- •• Y takes values in $\{3, \ldots, 18\}$
- \bullet • $Pr[Y = 3] = \frac{1}{6^3}$ (why?)

Expectation (discrete variables)

 \bullet • For a variable $X:\Omega\to\mathbb{Z}$ we define

$$
E[X] = \sum_{i \in \mathbb{Z}} i \cdot Pr[X = i]
$$

 \bullet Informally $E[X]$ is the "average" value of X.

- \bullet \bullet We have a coin which comes up heads with probability $p.$ We start flipping it until it comes up heads.
- \bullet • Let X be the number of times we flipped it.
- \bullet X follows ^a **geometric distribution**.
- •• What is $E[X]$?

Expectation – Geometric distribution

- \bullet \bullet We have a coin which comes up heads with probability $p.$ We start flipping it until it comes up heads.
- \bullet • Let X be the number of times we flipped it.
- \bullet X follows ^a **geometric distribution**.
- \bullet • What is $E[X]$?

$$
E[X] = \sum_{i=1}^{\infty} iPr[X = i] =
$$

$$
\sum_{i=1}^{\infty} i p (1-p)^{i-1} =
$$

$$
-p \sum_{i=0}^{\infty} \frac{d}{dp} ((1-p)^{i}) = -p \frac{d}{dp} (\sum_{i=0}^{\infty} (1-p)^{i}) =
$$

$$
= -p \frac{d}{dp} (\frac{1}{p}) = \frac{1}{p}
$$

Why do we like expectations so much?

- \bullet Relatively easy to calculate
- Gives ^a good estimate for value of r.v. with high probability (using•Markov, Chebyshev, Chernoff,...)

Why do we like expectations so much?

- \bullet Relatively easy to calculate
- Gives ^a good estimate for value of r.v. with high probability (using \bullet Markov, Chebyshev, Chernoff,. . .)
- \bullet Why are they easy to calculate?

Linearity of expectations

• For random variables X_1, \ldots, X_n , constants $a_1, \ldots, a_n \in \mathbb{R}$ we have \bullet

$$
E[\sum_{i=1}^{n} a_i X_i] = \sum_{i=1}^{n} a_i E[X_i]
$$

Why do we like expectations so much?

- \bullet Relatively easy to calculate
- Gives ^a good estimate for value of r.v. with high probability (using \bullet Markov, Chebyshev, Chernoff,. . .)
- \bullet Why are they easy to calculate?

Linearity of expectations

• For random variables X_1, \ldots, X_n , constants $a_1, \ldots, a_n \in \mathbb{R}$ we have \bullet

$$
E[\sum_{i=1}^{n} a_i X_i] = \sum_{i=1}^{n} a_i E[X_i]
$$

 \bullet **• Important** We don't care if the X_i 's are independent or not!

- \bullet Experiment: we throw ^a die until we have seen all possible numbers as outcomes.
- \bullet • Let X be the number of throws until we stop.
 $E[Y] = 2$ (if the die bee *legislag)*
- \bullet $E[X]=?$ (if the die has k sides)

- \bullet Experiment: we throw ^a die until we have seen all possible numbers as outcomes.
- \bullet • Let X be the number of throws until we stop.
 $E[Y] = 2$ (if the die bee *legislag)*
- \bullet $E[X]=?$ (if the die has k sides)
- \bullet • Define X_i , throws needed to see the *i*-th distinct number, after we have already seen $i-1$ distinct numbers.
- \bullet $X_1 = 1$.

- \bullet Experiment: we throw ^a die until we have seen all possible numbers as outcomes.
- \bullet • Let X be the number of throws until we stop.
 $E[Y] = 2$ (if the die bee *legislag)*
- \bullet $E[X]=?$ (if the die has k sides)
- \bullet • Define X_i , throws needed to see the *i*-th distinct number, after we have already seen $i-1$ distinct numbers.
- $X_1 = 1$.
- X_2 \bullet $_2$ follows a geom. dist. with probability $p_2=\frac{n}{2}$ 1 $\, n_{\textstyle{\cdot}}$
- X_i follows a geom. dist. with probability $p_i=\frac{n-1}{2}$ \bullet $\frac{-i+1}{n}$
- \bullet $X=$ $\sum_{i=1}^n$ $\frac{n}{i=1}X_i$

- \bullet Experiment: we throw ^a die until we have seen all possible numbers as outcomes.
- \bullet • Let X be the number of throws until we stop.
 $E[Y] = 2$ (if the die bee *legislag)*
- \bullet $E[X]=?$ (if the die has k sides)
- \bullet • Define X_i , throws needed to see the *i*-th distinct number, after we have already seen $i-1$ distinct numbers.
- \bullet $X_1 = 1$.
- X_2 \bullet $_2$ follows a geom. dist. with probability $p_2=\frac{n}{2}$ 1 $\, n_{\textstyle{\cdot}}$
- X_i follows a geom. dist. with probability $p_i=\frac{n-1}{2}$ \bullet $\frac{i+1}{n}$
- \bullet $X=$ $\sum_{i=1}^n$ $\frac{n}{i=1}X_i$

$$
E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{p_i} = n \sum_{i=1}^{n} \frac{1}{n - i + 1} \approx n \ln n
$$

- \bullet • Calculating $E[X]$ is usually only a first step.
- We want to show that X is "good" (close to $E[X]$) with high probability. \bullet
- \bullet For this, we need to use various helpful inequalities.

- \bullet • Calculating $E[X]$ is usually only a first step.
- We want to show that X is "good" (close to $E[X]$) with high probability. \bullet
- \bullet For this, we need to use various helpful inequalities.
- •**Markov's inequality**
- Assumes that X is always ≥ 0 $(Pr[X < 0] = 0)$ •

$$
Pr[X > \alpha E[X]] \le \frac{1}{\alpha}
$$

- \bullet • Calculating $E[X]$ is usually only a first step.
- We want to show that X is "good" (close to $E[X]$) with high probability. \bullet
- \bullet For this, we need to use various helpful inequalities.
- •**Markov's inequality**
- Assumes that X is always ≥ 0 $(Pr[X < 0] = 0)$ \bullet

$$
Pr[X > \alpha E[X]] \le \frac{1}{\alpha}
$$

 \bullet Proof:

$$
E[X] = \sum_{i=0}^{\infty} iPr[X = i] \ge
$$

$$
\sum_{i=\alpha E[X]}^{n} iPr[X = i] \ge \alpha E[X] Pr[X \ge \alpha E[X]]
$$

- \bullet • Calculating $E[X]$ is usually only a first step.
- We want to show that X is "good" (close to $E[X]$) with high probability. \bullet
- \bullet For this, we need to use various helpful inequalities.
- •**Markov's inequality**
- Assumes that X is always ≥ 0 $(Pr[X < 0] = 0)$ \bullet

$$
Pr[X > \alpha E[X]] \le \frac{1}{\alpha}
$$

 \bullet Proof:

$$
E[X] = \sum_{i=0}^{\infty} iPr[X = i] \ge
$$

$$
\sum_{i=\alpha E[X]}^{n} iPr[X = i] \ge \alpha E[X] Pr[X \ge \alpha E[X]]
$$

 \bullet Makes sense!

Algorithms M2 IF

Connecting the two previous slides:

- \bullet If X is the number of repetitions until we see all numbers, $E[X] = n \ln n$
- \bullet • For all $\alpha > 0$, $Pr[X > \alpha E[X]] \leq \frac{1}{\alpha}$
- \bullet $\bullet \quad \Rightarrow Pr[X > 100n \ln n] \leq \frac{1}{100}$
- \bullet • With high probability $X = O(n \log n)$
- \bullet • Note: we use the fact that $X \geq 0$

Using Variance

Variance

- \bullet A basic way to bound the distance of X from $E[X]$ is to calculate $Var[X]$
- \bullet Definition:

$$
Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}
$$

•**•** Reminder: we often write $\sigma = \sqrt{Var[X]}$ to denote the **standard deviation** of ^X.

Variance

- \bullet A basic way to bound the distance of X from $E[X]$ is to calculate $Var[X]$
- \bullet Definition:

$$
Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}
$$

- •**•** Reminder: we often write $\sigma = \sqrt{Var[X]}$ to denote the **standard deviation** of ^X.
- \bullet Reminder: variance is **not** as nice as expectation.
- \bullet • Example: in general $Var[X + Y] \neq Var[X] + Var[Y]$
	- •• However, $Var[X + Y] = Var[X] + Var[Y]$ if X, Y independent.

Chebyshev's inequality:

$$
Pr[|X - E[X]| \ge \alpha] \le \frac{Var[X]}{\alpha^2}
$$

- •• In other words, probability that we fall more than $\alpha\sigma(X)$ away from $E[X]$ is at most $\frac{1}{\alpha^2}.$
- •• This is why $\sigma(X) = \sqrt{Var[X]}$ is called "standard" deviation.

Chebyshev's inequality:

$$
Pr[|X - E[X]| \ge \alpha] \le \frac{Var[X]}{\alpha^2}
$$

- •• In other words, probability that we fall more than $\alpha\sigma(X)$ away from $E[X]$ is at most $\frac{1}{\alpha^2}.$
- \bullet • This is why $\sigma(X) = \sqrt{Var[X]}$ is called "standard" deviation.
- \bullet Proof:

$$
Pr[|X - E[X]| \ge \alpha] = Pr[(X - E[X])^2 \ge \alpha^2] \le
$$

$$
\le \frac{E[(X - E[X])^2]}{\alpha^2} = \frac{Var[X]}{\alpha^2}
$$

Application: Coupon collector again

- \bullet • Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes we see all outcomes
- \bullet $E[X] = n \ln n$
- By Markov, $Pr[X > 2n \ln n] \leq \frac{1}{2}$ \bullet 2

Application: Coupon collector again

- \bullet • Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes we see all outcomes
- \bullet $E[X] = n \ln n$
- By Markov, $Pr[X > 2n \ln n] \leq \frac{1}{2}$ \bullet 2
- Recall that X_i is repetitions in phase i \bullet
- $X=\sum X_i$, and the X_i 's are indepe \bullet $\sum X_i$, and the X_i 's are independent
- $\bullet \quad Var[X] = \sum Var[X_i]$ \bullet]
- \mathcal{L} at a and \mathcal{L} Variance of ^a geometrically distributed random variable? \bullet
	- $Var[Y] = \frac{1}{2}$ $\frac{-p}{p^2}$, for Y geom. with parameter p

Application: Coupon collector again

- \bullet • Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes we see all outcomes
- \bullet $E[X] = n \ln n$
- By Markov, $Pr[X > 2n \ln n] \leq \frac{1}{2}$ •2
- Recall that X_i is repetitions in phase i •
- $X=\sum X_i$, and the X_i 's are indepe \bullet $\sum X_i$, and the X_i 's are independent
- $\bullet \quad Var[X] = \sum Var[X_i]$ •]
- \mathcal{L} at a and \mathcal{L} Variance of ^a geometrically distributed random variable? \bullet

•
$$
Var[Y] = \frac{1-p}{p^2}
$$
, for Y geom. with parameter p

$$
Var[X] = \sum_{i=1}^{n} Var[X_i] \le \sum_{i=1}^{n} \left(\frac{n}{n-i+1}\right)^2 =
$$

= $n^2 \sum_{i=1}^{n} \frac{1}{i^2} \le \frac{\pi^2 n^2}{6}$

Algorithms M2 IF

$$
Var[X] \le \frac{\pi^2 n^2}{6}
$$

We then use Chebyshev's inequality which gives

$$
Pr[X > 2n \ln n] \le Pr[|X - n \ln n| > n \ln n] \le
$$

$$
\le \frac{n^2 \pi^2/6}{(n \ln n)^2} = O(\frac{1}{\log^2 n})
$$

Note: Markov's inequality only gives that this probability is at most $1/2.$

Summary

Important lessons to remember.

- \bullet • Inclusion-Exclusion: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$
- \bullet • Union bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$
- \bullet • Linearity of Expectation: $E[X_1 + X_2] = E[X_1] + E[X_2]$
- \bullet • Markov's inequality: $Pr[X > a] \leq \frac{E[X]}{a}$
- \bullet • Variance: $Var[X] = E[X^2] - E[X]^2$
- \bullet Variance only linear for independent variables!
- \bullet • Chebyshev's inequality: $Pr[|X - E[X]| > a] \leq \frac{Var[X]}{a^2}$