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To define probabilities we need:

• A “universe” of events Ω
• A collection of events E such that for E ∈ E we have E ⊆ Ω
• A probability function Pr : E → [0, 1]

Example:

• Ω = {1, 2, 3, 4, 5, 6}.

• The following could be events in E

• E3 = {3}
• Elow = {1, 2}
• Eodd = {1, 3, 5}

• The natural (uniform) probability function would set

• Pr[E3] = 1/6
• Pr[Elow] = 1/3
• Pr[Eodd] = 1/2
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To define probabilities we need:

• A “universe” of events Ω
• A collection of events E such that for E ∈ E we have E ⊆ Ω
• A probability function Pr : E → [0, 1]

Example (infinite space):

• Ω = [0, 1].
• The following could be events in E

• E3 = {1/3}
• Elow = [0, 1/2]
• Eedge = [0, 1/4] ∪ [3/4, 1]

• The natural (uniform) probability function would set

• Pr[E3] = 0 (why?)

• Pr[Elow] = 1/2
• Pr[Eedge] = 1/2
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To define probabilities we need:

• A “universe” of events Ω
• A collection of events E such that for E ∈ E we have E ⊆ Ω
• A probability function Pr : E → [0, 1]

A valid probability measure satisfies:

• Pr[Ω] = 1
• If E1, E2, . . . , En ∈ E and for all i 6= j, Ei ∩ Ej = ∅ (mutually disjoint

events), then

Pr[∪n
i=1Ei] =

n
∑

i=1

Pr[Ei]

These are called the Kolmogorov probability axioms.

• When Ω is finite, the distribution which sets for each i ∈ Ω
Pr[{i}] = 1

|Ω| is called the uniform distribution.



Probability Basics
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Remember: probabilities are sets deep down.

• Pr[∅] = 0
• If E1 ⊆ E2 then Pr[E1] ≤ Pr[E2]
• Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]

• Proof?

The last principle can be generalized to give the so-called

inclusion-exclusion formula:

Pr[A1 ∪A2 ∪ . . . An] =
n
∑

i=1

Pr[Ai]−
n
∑

i1 6=i2=1

Pr[Ai1 ∩Ai2 ] +

n
∑

i1 6=i2 6=i3=1

Pr[Ai1 ∩Ai2 ∩Ai3 ]− . . .



Union bound
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A very basic property that follows for any collection of events:

Pr[∪n
i=1Ai] ≤

n
∑

i=1

Pr[Ai]

• This is called the union bound.

• We often use this bound when Ai are “bad” events, and we want to

show that the probability of one of them happening is small.

• Main interest: it might be hard to calculate exactly Pr[∪Ai]. This

allows us to upper bound it without worrying about how each event

affects the others.

• The bound becomes an equality only when events are disjoint

(mutually exclusive).
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• Informally: a set of events is independent, if knowing that one

happened gives us no additional information about the others.

• Formally: A,B independent if Pr[A ∩B] = Pr[A] · Pr[B].
• Formally: A1, . . . , An independent if for any S ⊆ {1, . . . n} we have

Pr[∩i∈SAi] = Πi∈SPr[Ai].
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• A: result is odd

• B: result is divisible by three

• C: result is ≥ 4
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• Informally: a set of events is independent, if knowing that one

happened gives us no additional information about the others.

• Formally: A,B independent if Pr[A ∩B] = Pr[A] · Pr[B].
• Formally: A1, . . . , An independent if for any S ⊆ {1, . . . n} we have

Pr[∩i∈SAi] = Πi∈SPr[Ai].

• What is the difference between independence for two and for more

than two events?

• Pair-wise independence: A1, . . . , An are pair-wise independent iff for

any i 6= j ∈ {1, . . . , n} we have Pr[Ai ∩Aj ] = Pr[Ai] · Pr[Aj ].

Example: roll a die

• A: result is odd

• B: result is divisible by three

• C: result is ≥ 4
• A,B are independent; A,C are not; B,C are independent.
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• To define independence we asked “Does A tell us anything about B?”

• This corresponds to the notion of conditional probabilities:

• Definition:

Pr[A | B] =
Pr[A ∩B]

Pr[B]

• In words: the probability of A, given B.

• Note: only makes sense if Pr[B] 6= 0.
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• To define independence we asked “Does A tell us anything about B?”

• This corresponds to the notion of conditional probabilities:

• Definition:

Pr[A | B] =
Pr[A ∩B]

Pr[B]

• In words: the probability of A, given B.

• Note: only makes sense if Pr[B] 6= 0.

• So, if A,B independent, then Pr[A | B] = Pr[A].

• Makes sense!

• Important not to confuse Pr[A | B] with Pr[B | A].

• Pr[I sneeze | I have a cold] 6= Pr[I have a cold | I sneeze]

• Pr[A | B]Pr[B] = Pr[B | A]Pr[A] = Pr[A ∩B].



Useful Tools From Probability Theory
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• Random variable: a function X : Ω → R.

• Informally: a variable whose value depends on the outcome of a

random event.
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• Random variable: a function X : Ω → R.

• Informally: a variable whose value depends on the outcome of a

random event.

Example: we roll a die

• If X is the number shown, X is a random variable that takes values in

{1, . . . , 6}.

• Pr[X = 1] = 1
6

• If we roll three dice, let Y be (a r.v. equal to) their sum

• Y takes values in {3, . . . , 18}
• Pr[Y = 3] = 1

63
(why?)
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• Random variable: a function X : Ω → R.

• Informally: a variable whose value depends on the outcome of a

random event.

Example: we roll a die

• If X is the number shown, X is a random variable that takes values in

{1, . . . , 6}.

• Pr[X = 1] = 1
6

• If we roll three dice, let Y be (a r.v. equal to) their sum

• Y takes values in {3, . . . , 18}
• Pr[Y = 3] = 1

63
(why?)

Expectation (discrete variables)

• For a variable X : Ω → Z we define

E[X] =
∑

i∈Z

i · Pr[X = i]

• Informally E[X] is the “average” value of X.



Expectation – Geometric distribution
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• We have a coin which comes up heads with probability p. We start

flipping it until it comes up heads.

• Let X be the number of times we flipped it.

• X follows a geometric distribution.

• What is E[X]?
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• We have a coin which comes up heads with probability p. We start

flipping it until it comes up heads.

• Let X be the number of times we flipped it.

• X follows a geometric distribution.

• What is E[X]?

E[X] =
∞
∑

i=1

iPr[X = i] =

∞
∑

i=1

ip(1− p)i−1 =

−p
∞
∑

i=0

d

dp
((1− p)i) = −p

d

dp
(

∞
∑

i=0

(1− p)i) =

= −p
d

dp
(
1

p
) =

1

p

• Makes sense!
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Why do we like expectations so much?

• Relatively easy to calculate

• Gives a good estimate for value of r.v. with high probability (using

Markov, Chebyshev, Chernoff,. . . )
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Why do we like expectations so much?

• Relatively easy to calculate

• Gives a good estimate for value of r.v. with high probability (using

Markov, Chebyshev, Chernoff,. . . )

• Why are they easy to calculate?

Linearity of expectations

• For random variables X1, . . . , Xn, constants a1, . . . , an ∈ R we have

E[
n
∑

i=1

aiXi] =
n
∑

i=1

aiE[Xi]
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Why do we like expectations so much?

• Relatively easy to calculate

• Gives a good estimate for value of r.v. with high probability (using

Markov, Chebyshev, Chernoff,. . . )

• Why are they easy to calculate?

Linearity of expectations

• For random variables X1, . . . , Xn, constants a1, . . . , an ∈ R we have

E[
n
∑

i=1

aiXi] =
n
∑

i=1

aiE[Xi]

• Important We don’t care if the Xi’s are independent or not!
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• Experiment: we throw a die until we have seen all possible numbers

as outcomes.

• Let X be the number of throws until we stop.

• E[X] =? (if the die has k sides)
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• Define Xi, throws needed to see the i-th distinct number, after we

have already seen i− 1 distinct numbers.

• X1 = 1.
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• Experiment: we throw a die until we have seen all possible numbers

as outcomes.

• Let X be the number of throws until we stop.

• E[X] =? (if the die has k sides)

• Define Xi, throws needed to see the i-th distinct number, after we

have already seen i− 1 distinct numbers.

• X1 = 1.

• X2 follows a geom. dist. with probability p2 =
n−1
n

• Xi follows a geom. dist. with probability pi =
n−i+1

n

• X =
∑n

i=1Xi
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• Experiment: we throw a die until we have seen all possible numbers

as outcomes.

• Let X be the number of throws until we stop.

• E[X] =? (if the die has k sides)

• Define Xi, throws needed to see the i-th distinct number, after we

have already seen i− 1 distinct numbers.

• X1 = 1.

• X2 follows a geom. dist. with probability p2 =
n−1
n

• Xi follows a geom. dist. with probability pi =
n−i+1

n

• X =
∑n

i=1Xi

E[X] =
n
∑

i=1

E[Xi] =

n
∑

i=1

1

pi
= n

n
∑

i=1

1

n− i+ 1
≈ n lnn



When average is not enough
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• Calculating E[X] is usually only a first step.

• We want to show that X is “good” (close to E[X]) with high probability.

• For this, we need to use various helpful inequalities.
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• Assumes that X is always ≥ 0 (Pr[X < 0] = 0)

Pr[X > αE[X]] ≤
1
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• Calculating E[X] is usually only a first step.

• We want to show that X is “good” (close to E[X]) with high probability.

• For this, we need to use various helpful inequalities.

• Markov’s inequality

• Assumes that X is always ≥ 0 (Pr[X < 0] = 0)

Pr[X > αE[X]] ≤
1

α

• Proof:

E[X] =
∞
∑

i=0

iPr[X = i] ≥

∞
∑

i=αE[X]

iPr[X = i] ≥ αE[X]Pr[X ≥ αE[X]]

• Makes sense!



Markov collects coupons
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Connecting the two previous slides:

• If X is the number of repetitions until we see all numbers,

E[X] = n lnn
• For all α > 0, Pr[X > αE[X]] ≤ 1

α

• ⇒ Pr[X > 100n lnn] ≤ 1
100

• With high probability X = O(n logn)
• Note: we use the fact that X ≥ 0



Using Variance
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• A basic way to bound the distance of X from E[X] is to calculate

V ar[X]
• Definition:

V ar[X] = E[(X − E[X])2] = E[X2]− (E[X])2

• Reminder: we often write σ =
√

V ar[X] to denote the standard

deviation of X.
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• A basic way to bound the distance of X from E[X] is to calculate

V ar[X]
• Definition:

V ar[X] = E[(X − E[X])2] = E[X2]− (E[X])2

• Reminder: we often write σ =
√

V ar[X] to denote the standard

deviation of X.

• Reminder: variance is not as nice as expectation.

• Example: in general V ar[X + Y ] 6= V ar[X] + V ar[Y ]

• However, V ar[X + Y ] = V ar[X] + V ar[Y ] if X,Y independent.



Using Variance
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Chebyshev’s inequality:

Pr[|X − E[X]| ≥ α] ≤
V ar[X]

α2

• In other words, probability that we fall more than ασ(X) away from

E[X] is at most 1
α2 .

• This is why σ(X) =
√

V ar[X] is called “standard” deviation.
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Chebyshev’s inequality:

Pr[|X − E[X]| ≥ α] ≤
V ar[X]

α2

• In other words, probability that we fall more than ασ(X) away from

E[X] is at most 1
α2 .

• This is why σ(X) =
√

V ar[X] is called “standard” deviation.

• Proof:

Pr[|X − E[X]| ≥ α] = Pr[(X − E[X])2 ≥ α2] ≤

≤
E[(X −E[X])2]

α2
=

V ar[X]

α2
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• Recall Coupon Collector problem: X is the number of repetitions until

we see all outcomes

• E[X] = n lnn
• By Markov, Pr[X > 2n lnn] ≤ 1

2
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• Recall Coupon Collector problem: X is the number of repetitions until

we see all outcomes

• E[X] = n lnn
• By Markov, Pr[X > 2n lnn] ≤ 1

2
• Recall that Xi is repetitions in phase i
• X =

∑

Xi, and the Xi’s are independent

• V ar[X] =
∑

V ar[Xi]
• Variance of a geometrically distributed random variable?

• V ar[Y ] = 1−p
p2

, for Y geom. with parameter p

V ar[X] =
n
∑

i=1

V ar[Xi] ≤
n
∑

i=1

(

n

n− i+ 1

)2

=

= n2
n
∑

i=1

1

i2
≤

π2n2

6



Application: Coupon collector again

Algorithms M2 IF 19 / 20

V ar[X] ≤
π2n2

6

We then use Chebyshev’s inequality which gives

Pr[X > 2n lnn] ≤ Pr[|X − n lnn| > n lnn] ≤

≤
n2π2/6

(n lnn)2
= O(

1

log2 n
)

Note: Markov’s inequality only gives that this probability is at most 1/2.



Summary
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Important lessons to remember.

• Inclusion-Exclusion: Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]
• Union bound: Pr[A ∪B] ≤ Pr[A] + Pr[B]
• Linearity of Expectation: E[X1 +X2] = E[X1] + E[X2]

• Markov’s inequality: Pr[X > a] ≤ E[X]
a

• Variance: V ar[X] = E[X2]− E[X]2

• Variance only linear for independent variables!

• Chebyshev’s inequality: Pr[|X − E[X]| > a] ≤ V ar[X]
a2
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